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GP-DREAM web platform (dream.broadinstitute.org) The GP-DREAM platform offers a toolkit of network
inference and consensus methods.

Overview of the supplementary notes

Supplementary Note 1, Challenge description.
This chapter briefly introduces the general outline of the challenge including the provided datasets, participation
requirements and evaluation criteria. These aspects are described in more detail in the subsequent three sections.

Supplementary Note 2, Gene expression compendia.
The four gene expression compendia provided to the participants are described here. This section also describes
how the set of valid transcription factors was obtained. The set of transcription factors was also available to the
participants.

Supplementary Note 3, Gold standards.
This section explains the compilation of the gene regulatrory networks, i.e. the gold standards used for the evaluation
of the challenge participants. In case of S. cerevisiae, we describe the compilation of two alternative gold standards
used to evaluate the poor performance for S. cerevisiae. Note that this and the previous section expand on the Methods:
Expression data and gold standards section of the main manuscript.

Supplementary Note 4, Assessment of network inference methods.
This section describes the metrics used for the assessment of methods, i.e. the AUROC, AUPR as well as the overall
score. It further details our PCA and Network motif analyses including additional results and figures. It thus expands
on three Methods sections of the main manuscript, namely Performance metrics, Clustering of inference approaches by
principal component analysis (PCA) and Network motif analysis.

Supplementary Note 5, Data information content.
This section provides the results and figures for two aspects that are mentioned briefly in the Discussion section of the
main manuscript, namely the performance differences between the three organisms as well as which kinds of microarray
experiments provide the most valuable information for network inference. In particular, the low performance of network
inference in S. cerevisiae is analyzed and possible reasons are discussed with the corresponding references.

Supplementary Note 6, Integration of predictions.
Here, we discuss the details on our ensemble approach integrating 35 network inference approaches to obtain consensus
predictions. This section also expands on Box 1 from the main manuscript and describes the simulation approach that
generated the theoretical distributions shown in the box.

Supplementary Note 7, E. coli and S. aureus community networks.
This section describes the details of how the community networks were constructed along with further analysis of the
S. aureus network using the RegPrecise database. Module detection and GO term enrichment methods are also fully
explained.

Supplementary Note 8, Experimental validation.
Experiments were designed to test transcription factor to target gene regulation. The selection criteria for transcription
factors along with the full experimental details are covered.

Supplementary Note 9, Methodological insights.
This section extends the Discussion section of the main manuscript and describes in detail the method specific ad-
vantages and disadvantages that we identified. We analyze and discuss the reasons of the network motif specific
performance of certain methods and method classes. We also discuss performance improvements due to method spe-
cific enhancements as well as performance degradations due to method specific omissions.

Supplementary Note 10, Network inference methods.
This section contains the detailed descriptions of 15 network inference methods that were supplied by participants of
the challenge. Further, six off-the-shelf methods (marked by an asterisk in the title) are described that were used to
compare the performance of participants against state-of-the-art approaches.
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1 DREAM5 network inference
challenge description

The DREAM5 network inference challenge solicited pre-
dictions of genome-scale transcriptional regulatory net-
works for expression compendia in E. coli , S. cerevisiae, S.
aureus, and an in silico compendium. Each compendium
is represented as an expression matrix of g genes by c chip
measurements (Figure SS1).

In addition to the gene expression data (see below), a
number of descriptive features were supplied for each mi-
croarray experiment (e.g., temporal information if the ex-
periment is part of a time series, or the deleted gene if
it is a gene deletion experiment). Participants were fur-
ther given a list of candidate transcription factors for each
compendium. To fully anonymize the datasets, for the E.
coli , S. cerevisiae, and S. aureus compendia, all genes were
assigned an arbitrary gene identifier (e.g. G1, G2, . . . , GN ,
where there are N genes in a given compendium). Addi-
tionally, a set of decoy genes, representing roughly 5% of
the compendium, were introduced by randomly selecting
gene expression values from the compendium, itself. Gene
expression profiles for the in silico network were derived
from GeneNetWeaver.56

In order to participate in the challenge, predictions for all
four compendia were required. For each network, a list
of directed, unsigned edges had to be submitted ordered
according to the participant’s confidence scores.

The set of submitted predictions were compiled into the
prediction matrix (Figure SS1) that contains 29 entries
from the participating teams, 6 entries from publicly avail-
able methods, and an entry from integrating the 29 meth-
ods into an additional set of integrated community pre-
dictions. In the prediction matrix, each method is rep-
resented as an ordered list of predicted gene regulatory
interactions, ranked for prediction confidence.

Organism specific gold standards containing the known
transcription factor to target gene (transcription factor-
target gene) interactions (= true positives) were compiled
for assessing the participating approaches. For the eval-
uation, we considered all transcription factor-target gene
pairs that are not part of the gold standards as negatives,
although, as the gold standards are based on incomplete
knowledge, they might contain yet unknown true interac-
tions.

Expression compendia and gold standards are briefly
described in the following sections. The full descrip-
tion of the challenge is available on the challenge web-
sitea.

ahttp://wiki.c2b2.columbia.edu/dream/index.php/D5c4

2 Gene expression compendia

Expression compendia, gene lists, and transcription factor
lists for all considered datasets are supplied in Supple-
mentary Data 1. The data is also freely available from
the DREAM websiteb and the Many Microbe Microarrays
Database (M3D)c.

Staphylococcus aureus. A compendium of microarray
data was compiled for S. aureus, where all chips are the
same Affymetrix platform, the S. aureus Genome Arrayd.
Chips were downloaded from Gene Expression Omnibus
(GEO) (Platform ID: GPL1339), a publicly available web
repository hosted by the National Center for Biotechnol-
ogy Information (NCBI)e. In total, 160 chips with avail-
able raw data Affymetrix files (.CEL files) were com-
piled.

Microarray normalization was done using Robust Multi-
chip Averaging (RMA)9 through the software RMAEx-
pressf. All 160 chips were uploaded into RMAExpress
and normalization was done as one batch. All arrays were
background adjusted, quantile normalized, and probesets
were summarized using median polish. Normalized data
was exported as log-transformed expression values. Map-
ping of Affymetrix probeset ids to gene ids was done using
the library files made available from Affymetrix. Control
probesets and probesets that did not map unambiguously
to one gene were removed, specifically probeset ids ending
in _x, _s, _i were removed. Lastly, if multiple probesets
mapped to a single gene, then expression values were aver-
aged within each chip. Completion of these steps resulted
in a total of 2,677 genes over the 160 microarrays.

In addition to the gene × condition matrix, DREAM5
participants were also supplied with a list of known or pu-
tative transcription factors. Transcription factors were
identified based on their Gene Ontology (GO) annota-
tion. We selected genes annotated with a biological pro-
cess related to transcription, namely GO:0009299;mRNA
transcription or GO:0006351;transcription, DNA
dependent. Additionally, we also required that a gene be
annotated with a molecular function of GO:0003677;DNA
binding or any child terms. A total of 90 genes were
designated as potential transcription factors.

Escherichia coli. A compendium of microarray data
was compiled for E. coli , where all chips are the same
Affymetrix platform, the E. coli Antisense Genome Ar-
rayg. Chips were downloaded from GEO (Platform ID:
GPL199). In total, 805 chips with available raw data
Affymetrix files (.CEL files) were compiled.

bhttp://wiki.c2b2.columbia.edu/dream
chttp://m3d.bu.edu/dream/
dhttp://www.affymetrix.com
ehttp://www.ncbi.nlm.nih.gov/geo
fhttp://rmaexpress.bmbolstad.com
ghttp://www.affymetrix.com
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Figure S1: Evaluation of datasets and inference approaches
DREAM5 participants were solicited to infer gene regulatory interactions (prediction matrix, green) from three different
expression compendia (data matrix, blue). An additional set of predictions was derived by integrating all teams into
community predictions. Analysis steps discussed in the present paper differ according to which of the two matrices are
used and whether they depend on the gold standard of known gene regulatory interactions.

Microarray normalization was done as described for S.
aureus above. Completion of microarray normalization
and filtering resulted in a total of 4,297 genes over the
805 microarrays.

The list of potential transcription factors was obtained
from two sources. First, transcription factors defined by
RegulonDB were used.31 Second, transcription factors
were identified using GO terms as described for S. aureus
above. A total of 296 genes were designated as potential
transcription factors.

Saccharomyces cerevisiae. A compendium of microar-
ray data was compiled for S. cerevisiae, where all chips
are the same Affymetrix platform, the Affymetrix Yeast
Genome S98 Arrayh. Chips were downloaded from GEO
(Platform ID: GPL). In total, 536 chips with available raw
data Affymetrix files (.CEL files) were compiled.

Microarray normalization was done as described for S.
aureus above. Completion of microarray normalization
and filtering resulted in a total of 5,667 genes over the
536 microarrays.

We used the list of potential transcription factors defined
by Zhu et al.92 We further added transcription factors
identified using GO terms as described above. A total
of 183 genes were designated as potential transcription
factors.

We also evaluated the performance of some algorithms on
an independent yeast dataset of 904 chip measurements
from the M3D database.27 This dataset was used for in-
ternal comparison and was not provided to the partici-
pants of the DREAM5 challenge. The preparation and

hhttp://www.affymetrix.com

preprocessing of this dataset was performed in the same
way as the datasets of the challenge.

3 Gold standards

In this section, we describe how the gold standards for
E. coli and S. cerevisiae were compiled. S. aureus was
not used for benchmark evaluation and no gold standard
was constructed. For the in silico benchmark, the true
network structure is known and was used as gold standard.
All gold standards are supplied in Supplementary Data
1.

Note that in contrast to the in silico network, the gold
standards for E. coli and S. cerevisiae are obviously not
perfect. For S. cerevisiae, we tested a range of alternative
gold standards (see below). Of these, we chose the most
stringent gold standards for both organisms, which include
only interactions with strong experimental support. Thus,
most of the edges contained in the gold standards are likely
to be true (i.e., the gold standards are expected to have
relatively few false positives). However, they contain only
a subset of the true interactions (i.e., they have many false
negatives). Thus, predicted interactions that are not part
of the gold standard should not be considered incorrect
— they may also be newly discovered interactions that
are currently missing in the gold standard, as our experi-
mental validation of such novel interactions demonstrates
(Figure 4c of the main text). Consequently, the reported
precision and false positive rate (Supplementary Note
4.1) of network predictions should be considered with cau-
tion.
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Escherichia coli.

The model organism E. coli has a well-studied transcrip-
tional regulatory network, which makes it well-suited as a
benchmark for network inference. Known transcriptional
interactions are collected in the manually curated Eco-
Cyc42 and RegulonDB31 databases (the two databases are
synchronized). Each interaction is annotated with a set
of evidence codes, which are classified as either strong
or weak evidencei. The E. coli gold standard was con-
structed from RegulonDB Release 6.8. Only transcrip-
tional interactions with at least one strong evidence were
included (2,066 interactions).

Saccharomyces cerevisiae.

Several large-scale studies and databases have produced
genome-wide regulatory networks for S. cerevisiae. We
have confirmed that our results are consistent and repro-
ducible across several alternative gold standards. In par-
ticular, we find that the performance of inference methods
is low for S. cerevisiae (seeDiscussion of the main text and
Fig. SS8 & Fig. SS9) independently of the gold stan-
dard. In total, we have tested 16 gold standards derived
from three sources.1,39,50 In what follows, we describe the
different gold standards and discuss the measured perfor-
mance (AUPR and AUROC, see Supplementary Note
4.1) of inference methods on these gold standards (Fig.
SS2).

The first set of gold standards was obtained from the study
of MacIsaac et al.,50 which is based on a re-analysis of
ChIP-chip data for 203 transcription factors from Harbi-
son et al.33 Regulatory interactions were identified based
on measured binding (ChIP) and/or presence of evolu-
tionary conserved motifs of the transcription factor in the
intergenic region upstream of target genes. By varying the
thresholds required for binding and evolutionary conser-
vation of motifs, different versions of the network were ob-
tained. We considered all nine versions available from the
author’s websitej (genes and transcription factors that are
not part of our expression compendium were excluded).
The gold standard based on the most stringent thresh-
olds, which includes only interactions with strong evi-
dence of binding and a strongly conserved motif, also leads
to the “strongest signal” (highest AUROCs and biggest
fold-improvements for the AUPRsk), i.e., it “agrees best”

ihttp://regulondb.ccg.unam.mx/evidenceClassification.jsp
jhttp://fraenkel.mit.edu/improved_map
kThe AUPR of network predictions depends on the connectivity

of the gold standard, i.e., the ratio of positives (present edges) to
negatives (absent edges). The more densely connected the gold stan-
dard, the easier it is to correctly “guess” true edges and obtain a high
AUPR. For example, the same predictions have an AUPR of ∼32%
on the densely connected (low confidence) gold standard of the 1st
row, and ∼2% on the loosely connected (high confidence) gold stan-
dard of the 9th row in Fig. SS2. Thus, the absolute value of the
AUPR should be considered with caution and always be compared
to the expected AUPR of a random prediction, for instance.

with the inferred networks. In contrast, the gold standard
based on the loosest thresholds, which requires no ChIP
binding and no evolutionary conservation (only the pres-
ence of a motif), leads to the “weakest signal” — likely be-
cause it contains many false positives (motif instances that
are not bound and/or not functional in vivo). Incidentally,
our observations confirm the conclusion of MacIsaac et al.
and others43 that evolutionary conservation of motifs can
be used as a signal to improve the quality of ChIP-based
networks.

The second set of gold standards was derived from the
study of Hu, Killion & Iyer,39 which conducted a com-
prehensive mRNA profiling experiment of 269 yeast tran-
scription factor deletion mutants. Genes were considered
a target of a given transcription factor if they exhibited a
fold-change above a certain threshold. Independently of
the considered threshold, the overlap of the inferred net-
works and this gold standard is not better than expected
by chance (AUPR and AUROC values are similar to those
expected for random predictions, Fig. SS2).

Finally we evaluated a gold standard from the curated
YEASTRACT database,1 which compiles direct and indi-
rect evidence for yeast gene regulatory interactions from
more than 1,200 publications. While direct evidence
(28,336 interactions, as of version 1.1503, Jun 26, 2010)
was predominantly derived from ChIP experiments, indi-
rect evidence (21,847 interactions) was gathered from ex-
pression measurements of transcription factor deletion or
overexpression mutants. In the present document we will
refer to the YEASTRACT gold standard as the intersec-
tion of interactions with both direct and indirect evidence
(2,528 interactions, after filtering out transcription fac-
tors and genes not part of our expression compendium).
The YEASTRACT gold standard leads to slightly bet-
ter AUPR and AUROC values than the high-confidence
network of MacIsaac et al, however, the better agreement
between the inferred networks and YEASTRACT may be
because YEASTRACT includes expression data as evi-
dence and is thus not completely independent from the
inferred networks, which are also expression-based. In
contrast, the MacIsaac gold standard is based on orthog-
onal datasets (ChIP and conserved motifs) and does not
incorporate expression-based evidence.

Based on the above observations, we used the network
based on the most stringent thresholds from MacIsaac et
al. as gold standard for all method related assessments
and all other analyses, unless noted otherwise.

7

http://regulondb.ccg.unam.mx/evidenceClassification.jsp
http://fraenkel.mit.edu/improved_map
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4 Assessment of network inference
methods

4.1 Performance assessment

We used a standard approach established in previous
editions of the challenge to evaluate network predic-
tions.55,69,81 Briefly, we evaluate network predictions as
a binary classification task (edges are predicted to be
present or absent) and use standard performance met-
rics from machine learning, specifically precision vs. re-
call (PR) and receiver operating characteristic (ROC)
curves.23 We further evaluate predictions statistically and
compute an overall score summarizing the performance
across networks. Scoring metrics are described below.
Evaluation results are reported in:

• Figure SS3: PR and ROC curves;

• Figure SS4: Comparison of the ranking across com-
pendia;

• Supplementary Data 2: Table with the area under
the curves and scores;

• Supplementary Data 1: Evaluation scripts.

PR and ROC curves.

To score the ranked lists of interactions (the prediction
format is described in Supplementary Note 1) against
a binary gold standard, performance was assessed by the
area under the ROC curve (AUROC, true positive rate
vs. false positive rate) and the area under the precision
vs. recall curve (AUPR). Expressions for true positive
rate (TPR), false positive rate (FPR), precision and re-
call as a function of the cutoff (k) in the edge list are as
follows:69,81

recall(k) =
TP(k)

P
,

where TP(k) is the number of true positives in the top
k predictions in the edge list, and P is the number of
positives in the gold standard.

precision(k) =
TP(k)

TP(k) + FP(k)
=

TP(k)

k
,

where FP(k) is the number of false positives at cutoff k in
the edge list. The true positive rate is equivalent to recall
and is defined as:

TPR(k) =
TP(k)

P
.

The false positive rate is the fraction of negatives that are
incorrectly predicted at cutoff k

FPR(k) =
FP(k)

N
,

where N is the number of negatives in the gold stan-
dard.

Note that the length of the prediction lists was limited to
at most 100,000 edges (some teams also submitted shorter
lists). Edges not included in the list are thus effectively
predicted to be absent. We extended the PR and ROC
curves in an analytical way after the end of the list by
assuming a random ordering of the remaining edges, as
described.81 Note that AUROC values can vary by up to
7.5 percentage points when considering truncated vs. full
lists of predictions (the AUPR values, on the other hand,
don’t vary significantly — the reason is discussed in the
legend of Figure SS3).

Note that predictions for transcription factors and genes
that are not part of the gold standard, i.e., for which no
experimentally supported interactions exist, were ignored
in this evaluation.

Empirical p-values and overall scores.

AUROC and AUPR values were separately transformed
into p-values by simulating a null distribution for a large
number (25,000) of random networks. We fit the his-
togram of the randomly obtained AUROC and AUPR val-
ues using stretched exponentials as previously described81

to extrapolate the distribution to values beyond the imme-
diate range of the histogram. Note that p-values obtained
this way depend on how “random” is defined. We chose to
construct random edge lists by sampling edges from the
submitted edge lists of the participants. By design, an
“average” performance should have a p-value of approx-
imately 0.5 for the two metrics. We call this procedure
“grading on a curve” since the p-values are designed to
identify the best and worst relative performance but have
no absolute interpretation.

Overall scores are derived from the AUPR or the AUROC
for the three different networks by calculating the geo-
metric mean of the network specific p-values. We report
the negative log10 of this value as a score, or equiva-
lently,

ROC score =
1

3

3∑
i=1

−log10 pROCi

PR score =
1

3

3∑
i=1

−log10 pPRi.

Finally, an overall score is obtained as the mean of the
AUROC and AUPR derived scores. A high score corre-
sponds thus to low (significant) p-values.

4.2 Clustering of methods by PCA

To depict similarities and differences between inference
approaches via Principal Component Analysis (PCA),
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Figure S3: PR and ROC curves for individual methods and community predictions
PR curves are shown in panel a (note that the recall -axis has a different scale for each of the three networks), ROC
curves are shown in panel b. The performance of individual methods varies strongly across networks and a different
inference method performs best for each network. The integrated community predictions, on the other hand, are more
robust: the community ranks 1st, 3rd and 7th on the three networks according to the area under the PR curve, and
it ranks 2nd on each network according to the area under the ROC curve (cf. Fig. SS4). Since the prediction lists
were limited to 100k edges, the curves were extended analytically beyond this point (assuming random ordering of the
remaining edges). For example, this point has been marked for the community prediction of E. coli (*). Whereas the
analytical extension accounts only for a small part of the PR curve, it accounts for most of the ROC curve. Indeed,
the PR curves are more informative than the ROC curves for visualizing the performance at the top of the prediction
lists — for example, the high precision of the most confident predictions of Meta 5 for S. cerevisiae is not apparent in
the ROC curve (see Ref. 23 for an excellent discussion of the relation between PR and ROC curves).

10



E. coli
3020101 36

E. coli
3020101 36

In
 s

ili
co

1

10

20

30

36

1

10

20

30

36

S.
 c

er
ev

is
ia

e

12

345

6

1

2 3

1

2

34

5

1 2
4

3

5

1
2

3

4

5

6

7
8

1

2

3 4
5

6

7

8

12

3
45

6

1

2

3
1

2

3
4

5

1

2 4 3

5
12

3

4

5
6

78

1

2

3

4 5

6

7

8

1
2

3
45

6

1

2 3

1

2

34
5

1

2

4
3

5

1

2

3

4

5

6

78

1 2

3 4

5

6

7

8

1
2

3

4
5

61

2

3

1

2

3
4

5

1

2

43

5
1

2

3

4

5

6

78

1

2

3

4
5

6

7

8

Regression
Mutual information
Correlation
Bayesian networks

Inference methods
Other
Meta
Community

AUPR ranking AUROC rankinga b

11

1

1

Figure S4: Comparison of the method rankings across compendia
The scatter plots compare the performance of inference methods across the three microarray compendia. Shown are
the ranks of each method based on the AUPR (a) and AUROC (b). The ranking correlates poorly across compendia,
i.e., the performance of individual methods varies strongly. The performance of the community, on the other hand, is
robust (bottom left corner of the plots).

we extracted for each inference method a feature vector
from the prediction matrix (Figure SS1). These feature
vectors consist of ranks assigned by the given inference
method, where small ranks correspond to a high confi-
dence in the corresponding predicted interactions. We re-
stricted the prediction matrix to interactions predicted by
at least three inference methods, yielding 292,654 interac-
tions for the E. coli network, for instance. The prediction
matrix contains in row j at position i the rank assigned
by method j to the interaction i (or the maximum rank
if interaction i was not included in the prediction list of
method j). This represents each of the inference methods
as a point in a 292,654-dimensional space.

Prior to visualization, we applied PCA to reduce the di-
mensionality of the data. First, we performed PCA for
each of the four networks individually. An additional PCA
was performed by constructing a combined prediction ma-
trix by concatenation of the in silico, E. coli , and S. cere-
visiae prediction matrices. PCA was performed by singu-
lar value decomposition using SVDLIBCl and the default
parameters defined therein.

For a discussion of PCA related results the reader is also

ltedlab.mit.edu/∼dr/SVDLIBC

referred to Supplementary Note 9, the main text and
Figure 2b, which shows the PCA on the combined predic-
tion matrix. The visualization of the compendium specific
prediction matrices are shown in Figure SS5 (the 2nd vs.
3rd PC is shown — the 1st PC accounts mainly for the
overall performance and is thus less characteristic for the
different inference approaches, see Fig. SS6). Note that
the PCA analysis does not use the gold standards. In
contrast to the network motif analysis described in the
next section, it can thus be applied even if no gold stan-
dard is available, as in the case of S. aureus in the present
assessment.

We find that results are consistent across the four compen-
dia. The PCA reveals four clusters of methods that largely
confirm our method categorization scheme from Table 1
(main text). Clusters 1, 2, and 3 overlap strongly with
the method categories Regression, Bayesian networks, and
Correlation/Mutual information, respectively. Although
the performance between approaches from the same cate-
gory can vary strongly (e.g., Regression 1 and Regression
8 rank 3rd and 33rd, respectively), the similarity between
their predictions was picked up clearly in the PCA.

Unrelated methods from the categories Meta and Other
are not represented by the depicted principal components
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Figure S5: PCA for individual compendia
Methods that tend to predict similar interactions are clustered via PCA. Shown are the 2nd vs. 3rd principal components
(the 1st PC is shown in Fig. SS6). Results for individual compendia (shown here) are largely consistent with the
PCA across all compendia (shown in Fig. 2b of the main text).
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Figure S6: First principal component
The 1st PC correlates (r = 0.54) with overall performance
(mean AUPR).

and are thus grouped near the origin in the PCA plot
(cluster 4).

4.3 Network motif analysis

The goal of the network-motif analysis is to evaluate, for a
given network inference method, whether an edge A→ B
that is part of a given motif (Figure SS7) is systemati-
cally predicted less (or more) reliably than expected.55 We
considered six different motifs. For each inference method,
we determined the average rank rm (i.e., the prediction
confidence) assigned to all edges of a given motif type m.
We further determined the average rank rm̄ of all edges
that are part of the complementary motif m̄. The predic-
tion bias is given by the difference rm − rm̄. A positive
bias means that this type of edge was ranked higher, i.e.,
predicted more confidently, than other (complementary)
edges. Conversely, a negative bias indicates a reduced
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Figure S7: Definition of motif types used to analyze prediction biases
Network motifs were defined for the analysis of method specific prediction biases. The average rank (prediction
confidence) assigned to edges A → B of a given motif type (first column) was compared to the average rank assigned
to edges that are not part of this motif type (i.e., that are part of the complementary motif type defined in the second
column).

prediction confidence for this edge type. The six types
of motifs and their complementary motifs are defined in
Figure SS7.

Note that motif instances overlap in the network. Never-
theless, a given edge A → B is only counted once for a
given motif regardless whether it is present in only one or
several overlapping instances of that motif.

The relative advantages and limitations of different in-
ference approaches to distinguish and exploit such local
motifs are discussed in the main text (Fig. 2c) and in
Supplementary Note 9.

5 Data information content

5.1 Estimation of inference difficulty

A fundamental assumption of expression-based network
inference algorithms is that mRNA levels of regulators
and their targets display some degree of mutual depen-
dency. As a coarse estimate of inference difficulty, we thus
analyzed to what extent regulatory interactions between

transcription factors and their known targets are reflected
by dependencies between their respective expression pro-
files. As measures of dependency, we selected mutual in-
formation and Pearson’s correlation, as they are utilized
for the detection of gene regulatory interactions by many
of the commonly-used, and participant-submitted infer-
ence approaches. Pearson’s correlation distinguishes pos-
itive from negative correlations but does not, in contrast
to mutual information, enable the detection of non-linear
dependencies. See Supplementary Note 10.7 and Sup-
plementary Note 10.10 for a description of the calcu-
lations used for mutual information and Pearson’s corre-
lation, respectively.

The distribution of dependencies are shown in Figure
SS8. Mutual information and Pearson’s correlation were
computed for each transcription factor-gene pair across all
chip measurements from a given expression compendium.
The set of possible gene pairs was partitioned into three
subsets: interacting (i.e., a transcription factor and one of
its known target genes), non-interacting, and co-regulated
pairs. The latter depict the dependencies between pairs of
genes that are regulated by identical sets of transcription
factors.
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Figure S8: Mutual dependency of mRNA levels between transcription factors and target genes in
different compendia
In both the in silico and E. coli compendia, mutual dependencies between expression profiles of transcription factors
and their known target genes exceed the dependencies observed between non-interacting gene pairs. This is true
regardless whether Pearson’s correlation or mutual information is used to measure the dependencies. In S. cerevisiae,
dependency distributions are almost identical, suggesting that it is much more difficult to detect transcription factor-
gene interactions based on dependencies dervied from the compenium of gene expression data used in the DREAM5
network inference challenge.
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Figure S9: Transcription factor-target gene dependency of mRNA levels for alternative yeast compendia
and gold standards
Results from Figure SS8 are confirmed using an alternative microarray compendium and gold standard for S. cere-
visiae: interacting and non-interacting gene pairs exhibit very similar distributions independently of the compendium
and gold standard.

Examining the existence and extent of such dependencies
yields a first impression of the level of difficulty of network
inference in the three compendia. The in silico and E. coli
compendia show a marked enrichment of strong depen-
dencies between interacting gene pairs. This enrichment
occurs for both positive and negative correlations in the
in silico data, while only positive correlations are enriched
in E. coli gene regulatory interactions. Absence of anti-
correlation in vivo, even though conceivable theoretically
and thus present in the in silico network, is consistent
with previous studies.37,60 Compared to in silico and E.
coli , virtually no enrichment of strong dependencies is ob-
served in S. cerevisiae gene regulatory interactions. Simi-
lar results are obtained with an additional, independent S.
cerevisiae microarray compendium27 and gold standard39

(Fig. SS9, see Supplementary Note 2 and Supple-
mentary Note 3 for a description of this dataset and
gold standard).

Next we investigated whether the presence of operons in
E. coli could be a reason for the higher performance of
network inference in comparison to S. cerevisiae. At this
point, we would like to note that participants had no in-
formation on the identity of the organisms or the genes

during the challenge as gene names were replaced by ran-
dom identifiers. The information of which genes are or-
ganized in operons was thus not available to the partic-
ipants. Nevertheless, three participants specifically used
clustering to deduce regulons. This was not successful as
they rather scored below average: Other 6 (overall rank
31/35), Meta 5 (overall 18/35) and Regression 8 (overall
32/35). In contrast, the teams that ranked in the top third
for E. coli did not take operons into account. These two
points, namely the absence of information on operons dur-
ing the challenge and the low performance of approaches
that aimed to deduce operons, seem to argue that sub-
stantial operon-overfitting is not a likely reason for per-
formance differences between E. coli and S. cerevisiae.
Rather than the correlation structure within genes of the
same operon, the correlation structure between transcrip-
tion factors and their targets accounts for the observed
performance differences.

The absence of such correlation structures or dependen-
cies between mRNA levels of transcription factors and
their targets in S. cerevisiae has two main reasons. The
first reason is that the S. cerevisiae gold standards are
more heavily dependent on chromatin immunoprecipi-
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tation (ChIP) experiments than the E. coli gold stan-
dards. The physical binding of a transcription factor to
the promotor region of a target gene is a required but
not sufficient condition for effective gene regulation. tran-
scription factor-target gene pairs derived from ChIP thus
contain many false positives. However, in addition to
strong evidence of binding, we also required the presence
of strongly conserved transcription factor-binding motifs,
which should filter out at least part of the false positives
from the ChIP data50 (Supplementary Note 3). The
lesser quality of the S. cerevisiae gold standard compared
to E. coli thus cannot explain the complete absence of de-
pendency between transcription factor and target mRNA
levels. The second reason for this absence of dependency
is the greater complexity of gene regulation in eukaryotes.
In particular, additional layers of regulation at the post-
transcriptional and chromatin levels lead to a reduced de-
pendency of mRNA concentration between regulators and
targets, and thus an increased difficulty for expression-
based inference of eukaryotic networks.39,60 Hu et al.39
found gene regulatory network inference in yeast very
challenging. Despite the availability of microarray mea-
surements for all 270 S. cerevisiae transcription factors,
the performance of inference was hardly better than guess-
ing. They discussed four potential reasons for the higher
difficulty of inference in eucaryotes, namely the lack of
operons, the high functional overlaps of transcription fac-
tors, transcription factors regulated on the protein rather
than the transcript level as well as the fact that tran-
scription factors regulate a high number of targets, albeit
only mildly. Michoel et al.60 found that the overall per-
formance of network inference in S. cerevisiae is quite low
and that better results can only be achieved on specific se-
lected subsystems. According to Wu et al.,88 independent
measurements of the actual activities of the transcription
factors would be required in order to resolve the subtle ex-
pression dependencies between transcription factors and
their targets. Also, Herrgard et al.37 pointed out that
a lack of correlation might be due to the fact that most
transcription factors themselves are not significantly tran-
scriptionally regulated and their expression remains at a
low constitutive level. Instead, many transcription fac-
tors such as Mig1 glucose repressor in yeast are regulated
by phosphorylation and localization as well as other post-
transcriptional regulatory mechanisms.

5.2 Information content of different experi-
ment types

We sought to evaluate how informative different exper-
iment types, such as time courses, drug perturbations,
and genetic perturbations, are for network inference. To
evaluate the information content of different experiment
types across the three compendia, we first computed a

weight for each individual microarray chip using a machine
learning framework (described below). Subsequently, in-
dividual weights were averaged across chips of particu-
lar experiment types, such as time series, drug pertur-
bations, gene and transcription factor knockout or over-
expression experiments, as well as combinations thereof
(Fig. SS10).

The chip weights were computed as follows. We ap-
plied feature subset selection approaches based on ma-
chine learning classifiers to the in silico, E. coli , and S.
cerevisiae expression compendia to estimate the signifi-
cance of individual features (here: microarray chips) with
respect to their ability to correctly identify transcriptional
regulatory interactions. Thus, an individual local binary
classifier61 was constructed for each transcription factor
to distinguish known target genes from non-targets as de-
fined by the given gold standards. As classifiers, both
decision trees and support vector machines (SVMs) were
employed. Decision trees were constructed72 by selecting
microarray chips as decision nodes based on information
gain, which we interpret as chip specific weights. In addi-
tion, linear SVMs17 were trained by optimizing SVM co-
efficients (α weights). In the case of linear SVM models,
chip specific weights can be computed by an α-weighted
linear combination of the support vectors. Default pa-
rameters were used for the training of both classifiers.
As suggested by Mordelet and Vert,61 a three-fold cross-
validation was employed.

This analysis shows that direct transcription factor ma-
nipulations, i.e., knockout/deletion or overexpression, are
most informative for the inference of interactions involv-
ing this transcription factor (Fig. SS10). In comparison
to these transcription factor specific perturbations, the re-
maining categories have on average much lower weights.
The difference between weights of transcription factor spe-
cific knockouts and the other kinds of experiments is more
pronounced for decision trees (that optimize chip weights)
as compared to SVMs (that optimize example weights).
Note that the S. cerevisiae compendium included only
three transcription factor-deletion measurements for a sin-
gle transcription factor (GCN4): results are therefore not
as reliable as for the other compendia. Transcription fac-
tor overexpression experiments were also very rare in the
examined compendia and were thus included in the same
category as the knockouts in Figure SS10. We compared
the information content of knockout versus overexpression
experiments in a different E. coli compendium from the
M3D database27 (Supplementary Note 2) and found
that chip weights from transcription factor specific over-
expression are comparable to the knockout weights.

We conclude that direct transcription factor perturbations
(knockout/overexpression) are the most informative exper-
iments on average. However, other kinds of experimental
conditions can be similarly informative for the inference of
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Figure S10: Information content of different experiment types for network inference
Feature selection was employed to estimate the utility of microarray chips from different experiment types to correctly
identify gene regulatory interactions. Microarray measurements were categorized into time series, drug perturbations,
gene knockout/overexpression (KO/OE) experiments, as well as combinations thereof. The bar at position 8 only refers
to the weight of transcription factor knock out/over-expression experiments for inferring interactions involving that
transcription factor. Knockout or overexpression of a transcription factor is by far the most informative experiment
to detect regulatory interactions, independently of the classifier and compendium used. Note that in the S. cerevisiae
compendium there were only three transcription factor deletion experiments available (all for the same transcription
factor), results are thus not as reliable as for the other two compendia.

the targets of certain transcription factors (Fig. SS11),
but here it will be much more difficult to decide a priori
which kind of conditions that may be.

6 Integration of predictions

6.1 Why community integration can out-
perform the best individuals

Of the many ways to integrate results from an ensemble
of predictions,47 we have chosen the Borda count election
method. It was originally developed by 18th-century po-
litical scientist Jean-Charles de Borda as a method to se-
lect candidates in a democratic election.12 In this method,
voters rank candidates in order of preference, and the win-
ner of the election is the candidate with the best average
rank. Similarly, DREAM5 participants provide a ranked
list of transcription factor-target gene predictions. Fig-
ure S12a exemplifies three possible prediction lists where
we denote transcription factor-target gene interactions by
the letters A,B,C, . . . ,X, Y, Z. For example, Team 2 has
high confidence that interaction A is a true interaction,
but Team 1 and Team 3 are less certain about the truth

of this interaction, having placed it at position 5 and 20
of the ranked lists, respectively. The same is true at the
other end of the list. Team 2 considered Y to be a very
unlikely interaction, but Team 3 located it at position 10
of its ranked list.

In this section, we wish to build some intuition to un-
derstand why the integration of predictions can outper-
form individual teams. Let us assume that we have P
true transcription factor-target gene interactions (the pos-
itives) and N non-interacting transcription factor-target
gene pairs (the negatives). In total, there are T = N + P
possible predictions. Different applications of the same
network reconstruction algorithm that attempt to infer a
given network can create lists of predictions in which the
same interaction I can be placed in different rank posi-
tions. This will depend on the set of experiments used
by the algorithm, random aspects of the method itself,
biological variability, etc. Therefore, each method can be
characterized by the probability ppos(r, I) that it places
a given true interaction I at rank r. We make the sim-
plifying assumption that this probability is the same for
all interactions (i.e., ppos(r, I) is independent of I), and
refer to this probability as ppos(r). By randomly rank-
ing interactions, we expect ppos(r) = 1/T . However, if a
method has better than random predictive power, there
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Figure S11: Significance of individual microarrays for network inference
The heatmap depicts the internal node weights of decision trees trained to predict the target genes of E. coli transcrip-
tion factors. A single weight thus represents the importance of an individual microarray for the detection of known
target genes for a given transcription factor. If a microarray of a transcription factor deletion mutant is available (tran-
scription factors marked by *), it often receives particularly strong weights (cyan arrows). Even tough other types of
experiments have lower weights on average (Fig. SS10), they can be similarly informative in some conditions (bright
spots scattered through the matrix). Hierarchical clustering was employed to sort rows and columns of the heatmap.

will be some tendency for the method to have an enhanced
probability of detecting true interactions at the top of the
ranked predictions, such as:

ppos(r) =
1

T
+
b

P
(1− 2

r − 1

T − 1
) ,

where we introduce a parameter that accounts for bias,
b. Note that if b = 0, the probability reduces to that
of the random prediction method. There is also a corre-
sponding probability of detecting a non-interacting tran-
scription factor-target gene pair (a negative) at rank posi-
tion r, pneg(r). Note that, as each ranked position in the
prediction list must contain either an interacting or non-
interacting transcription factor-target gene pair (a positive
or a negative), the condition P · ppos(r) +N · pneg(r) = 1
holds, and therefore:

pneg(r) =
1

T
+

b

N
(1− 2

r − 1

T − 1
) .

In order for these probabilities to be positive, b has to
be smaller than the smaller of N/T and P/T . Figure
S12b shows the results of these calculations where P =

30, N = 70, and b = 0.2. It can be shown that the
average area under the precision recall curve (AUPR) for
a method following these probability laws is 0.41 (for a
random prediction we expect AUPR=P/T=0.3).

Let us now explore what happens to the average rank
of a true interaction if we integrate the predictions of a
community of K inference methods. The average rank as-
signed to a possible transcription factor-target gene inter-
action I, over the predictions of the K inference methods,
is computed as

rBorda(I) =
1

K

K∑
j=1

rj(I) .

As an example, the true interaction A in Figure S12a
has average rank 8.66, whereas non-interaction Z has av-
erage rank 19.67. If a method has better than a random
probability to predict true interactions, then the average
rank for a true interaction will be different from the av-
erage rank for a transcription factor-target gene pair that
doesn’t interact, given that the former is computed using
the average over ppos(r) and the latter is computed using
pneg(r). We will assume that all the teams in this commu-
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Figure S12: Why community integration can outperform the best individual inference methods
(a) A hypothetical example of predictions submitted by 3 separate teams. The challenge is to integrate predictions
made by each team into a single ranked list. (b-d) Two sufficient conditions for integration to outperform individual
inference methods are: (1) each of the inference methods must have better than random predictive power (i.e., on average
interacting pairs are assigned better ranks than non-interacting pairs); and (2) predictions of different inference methods
must be statistically independent.24 For illustrative purpose, we consider a simple scenario comprising T=100 candidate
transcription factor-gene pairs, out of which P=30 interact and N=70 do not interact. For instance, individual inference
methods that assign ranks to interacting and non-interacting pairs with the probabilities shown in Panel b suffice
condition (1). Although interacting pairs are assigned better ranks on average, the probability of incorrect predictions
(non-interacting pairs in the top-part or interacting pairs in the bottom-part of the prediction list) is considerable in
this example, resulting in an AUPR of only 0.41 (for a random prediction, we expect AUPR=P/T=0.3). (c, d) If the
assigned ranks are independent across methods (condition 2), the central limit theorem establishes that the average
rank distribution will approach a Gaussian distribution. Its variance shrinks as more methods are integrated, thereby
increasingly segregating interacting from non-interacting transcription factor-gene pairs (Panels b→ d). Consequently,
the probability that interacting pairs are ranked better than non-interacting pairs increases, resulting in an AUPR that
tends to 1 (perfect prediction) as the number of integrated inference methods increases. Even though all predictions
are based on the same datasets in the DREAM challenge, and are thus not statistically independent, we have shown
that diversity arises due to method-specific capabilities to extract different kinds of information from the data (Fig. 2).
Methods from different classes show greater levels of independence and thus contribute more to community performance
(Figs. 2b and 3c). Since predictions are partially, but not completely independent, the AUPR increases as more methods
are integrated (Fig. 3a) but tends to a value lower than 1 in practice.
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nity have the same ppos(r) and pneg(r). The distribution
of the average ranks for interacting and non-interacting
pair pairs are shown in Figure S12b-d for an individual
inference method and the integration of 5 and 30 infer-
ence methods, respectively. As the number of integrated
methods increases, a true interacting pair is more likely to
have a better rank than a non-interacting pair. As this is
true for any interacting and non-interacting pair, then the
interacting segregate from the non-interacting pairs. This
feature of integration results in a larger AUPR curve as the
number of included methods increases (e.g., AUPR=0.66
for 5 teams and 0.97 for 30 teams). It is clear then that
the aggregation of even 5 teams outperforms (according
to the AUPR metric) each of the participating members
of the aggregate, whose typical AUPR is 0.41.

In order for the integration to outperform individual pre-
dictions, the methods being integrated need to be statis-
tically independent, that is, the rank where an interac-
tion is placed by a method has no statistical dependency
on the rank where the same interaction is placed by any
other method. If this assumption holds, then the central
limit theorem of probability theory establishes that, as
more predictions are averaged, the average rank distribu-
tion will approach a Gaussian distribution whose variance
shrinks as the number of integrated teams increases. If the
integrated methods have some predictive ability, then the
mean ranks of the interacting transcription factor-target
gene pairs will be better than the mean ranks of of the non-
interacting transcription factor-target gene pairs, and the
variances will eventually shrink to make all the interac-
tions have average ranks that cluster tightly around their
respective means. In our example it can be shown that
more than 95% of the true interactions will have an inte-
grated rank in the interval

[
T

2
− bT 2

6P
− T√

3k
,

T

2
− bT 2

6P
+

T√
3K

] ,

whereas more than 95% of the non-interactions will have
an integrated rank in the interval

[
T

2
+
bT 2

6N
− T√

3k
,

T

2
+
bT 2

6N
+

T√
3K

] .

Thus, when K (the number of members in the commu-
nity) is large enough, the 95% intervals will cease to over-
lap, and 95% of the positives will be ranked above 95%
of the negatives, producing excellent precision and re-
call. It is clear that as K increases, having a positive
in the interval where the negatives concentrate will be
extremely unlikely. That is, under the assumption of in-
dependent predictions, the area under the precision recall
curve (AUPR) tends to 1 as the number of integrated
methods increases.

In the real world scenario of the present DREAM5 net-
work inference challenge, predictions from different meth-
ods are indeed considerably different (as shown in Figs.
2b,c in main text) but can obviously not be fully indepen-
dent as all predictors use the same input data. Thus, as
predictions are partially, but not completely independent,
the AUPR increases when more predictors are integrated
(see Fig. 3a in main text) but tends to a value lower than
1.

6.2 DREAM5 community networks

All 29 DREAM5 submissions were used to construct
the community-based transcriptional regulatory networks.
For each compendium, integration of the individual team
predictions into a single community network was done us-
ing the Borda count method described in the previous
section. The resulting community-based networks con-
sists of the reordered lists of transcription factor-target
gene pairs.

Each team was requested to submit a total of 100,000 pre-
dictions. Interactions not listed in the top 100,000 predic-
tions were assigned a rank of 100,001. Upon completion of
applying Borda’s method, and for each dataset (in silico,
E. coli , S. cerevisiae, S. aureus), the top 100,000 predic-
tions were selected and called the community predictions
(Supplementary Data 3).

Weighted voting.

Borda count voting amounts to an unweighted rank aver-
age over the individual predictions of an interaction. To
explore how the community predictions are affected when
combining only the best-performing methods and/or giv-
ing methods with a better performance a higher weight,
we tested several weighted voting schemes. We stress that
these weighted voting methods are only applied to build
an intuition of how the performance of community pre-
dictions is affected by good/poor predictors. Weighted
voting cannot be used in practice when inferring an un-
known regulatory network, as in the case of S. aureus here,
because the performance of the inference methods is not
known.

The weighted average rank assigned to a possible tran-
scription factor-target gene interaction I, over the predic-
tions of the K inference methods, is computed as

r(I) =
1∑K

j=1 wj
·
K∑
j=1

wj rj(I) ,

where wj is a measure of performance of method j (e.g.,
the AUPR).

To gain a sense of the performance of unweighted (Borda
count) and weighted community predictions, we systemat-
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Figure S13: Community integration using unweighted and weighted voting
Community predictions were obtained by combining the two best teams, the three best teams, the four best teams, etc,
using either unweighted (Borda count) or weighted voting. In addition to voting based on the edge ranks (diamonds),
we also tested voting based on the edge confidence values (third column in the prediction format, Supplementary
Note 1) assigned by the inference methods (squares). In accordance with Figure 3d of the main text, even unweighted
voting is robust to inclusion of poor predictors. Although weighted voting based on edge confidence values performed
best overall, the difference with the other approaches is relatively small on the three individual compendia. We
stress that only the unweighted voting that combines all methods at hand (rightmost points marked with arrows) is
truly unsupervised, i.e., can be applied when inferring an unknown regulatory network, where the performance of the
individual methods is not known a priori.

ically formed communities composed of the top two meth-
ods, the top three methods, the top four methods, etc.,
until the last community, which contains all 29 methods
applied by the participants of the challenge (Fig. SS13).
This analysis confirms an observation made in the main
text (Figure 3d): adding poor predictions hardly de-
grades the consensus of the more accurate predictions,
even when using unweighted voting. Although weighted
voting improves the performance overall, the difference is
rather small on the individual compendia. Therefore, and
since the performance of inference methods is difficult to
estimate when inferring an unknown regulatory network,
integrating all inference methods at hand using unweighted
voting seems to be a good choice.

7 E. coli and S. aureus community
networks

7.1 Network construction

Community predictions for E. coli and S. aureus were ob-
tained using the Borda count method as described in the
previous section. Note that these community predictions
are weighted networks, as they assign a measure of con-
fidence (the average rank) to edges. To obtain an un-
weighted network that classifies edges simply as present
or absent, a confidence threshold must be chosen. Edges
above the threshold are considered present, and those be-

low absent. Choosing a threshold amounts to a trade-off
between sensitivity and specificity. For the analysis of the
E. coli and S. aureus community networks in the main
text, we chose a cutoff of 1,688 edges, which corresponds
to an estimated precision of 50% for E. coli . Precision was
estimated based on the RegulonDB gold standard of in-
teractions described in Supplementary Note 3.

Note that many genes and (potential) transcription fac-
tors still have no experimentally supported interactions
in RegulonDB, i.e., they are not part of our gold stan-
dard. Edges involving genes or transcription factors that
are not part of the gold standard were ignored when com-
puting the precision (i.e., they were neither counted as
true nor as false positives, instead they were simply ex-
cluded from the calculation). For example, at the cutoff of
1,688 edges, only 200 edges are part of the gold standard.
Of these 200 edges, 100 were true positives and 100 were
false positives, resulting in the estimated precision of 50%.
Note that this is a conservative estimate, because some of
the novel edges that are considered false positives may
in fact be newly discovered regulatory interactions that
are currently missing in RegulonDB, as our independent
experimental validation of such novel interactions shows
(Figure 4 of the main text).

As discussed, there is no gold standard set of interactions
that exist for S. aureus, which presents the problem of
not being able to directly ascribe a precision with a given
nework size. In this case, we make the assumption that the
S. aureus network predictions perform similarly to the E.
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Figure S14: Rank improvement of individual edges through community integration
The plot shows the number of true interactions that were predicted worse, similarly, or better by the integrated commu-
nity network than by the individual inference methods (the average over all methods is shown in grey). Interactions were
counted as predicted better or worse than the individual methods if the difference rank(integrated)− rank(methodi)
exceeds 10,000 or -10,000 ranks, respectively. Otherwise, the predictions were considered similar. The majority of true
interactions were ranked better (by a large margin of over 10,000 ranks) in the community network than even in the
best individual predictions. Note that the ordering of methods is the same as in the main document (Table 1 and
Figure 2).

coli community network. Under this assumption, we use
the network size of 1,688 edges since this is the network
size derived from the E. coli network at an estimated 50%
precision.

7.2 S. aureus network evaluation using Reg-
Precise

RegPrecise is a database of transcriptional regulatory in-
teractions in prokaryotes that have been inferred using
manually reviewed, homology based methods.63 For the
DREAM challenge evaluations, we required all gold stan-
dard interactions to be experimentally supported and did
not consider electronically inferred interactions. As the
interactions in RegPrecise for S. aureus are largely elec-
tronically inferred, we did not consider RegPrecise as a
gold standard for the overall evaluation. Nonetheless, the
RegPrecise interactions represent a rich set of information
that we have used to test our assumption that the 50%
precision threshold derived in E. coli can be used as a
proxy for performance in S. aureus.

RegPrecise contains 517 interactions comprised of 38
transcription factors and 446 target genes that match

up with the genes represented in the microarray com-
pendium supplied in the DREAM5 network inference chal-
lenge. All individual methods and the community network
performance were evaluated using AUPR and AUROC
(Supplementary Note 4.1). We performed the same
analysis using RegPrecise interactions and report the per-
formance in S15. Using the AUPR, we find that the S.
aureus community network ranks 3rd.

The 50% precision reported for E. coli correponds to 1,688
interactions. We identified 50% precision in the S. aureus
community network from the RegPrecise analysis and this
threshold corresponds to a network with 988 interactions.
For the E. coli gold standard interactions reported in Reg-
ulonDB, there were 2,066 experimentally supported in-
teractions comprised of 144 transcription factors and 999
target genes. Considering that the E. coli gold standard
is 4 times the size of RegPrecise and only experimentally
supported interactions from RegulonDB were used, we feel
that the RegPrecise interactions understimate the number
of true positive relationships. Therefore, we report the S.
aureus community network using the 50% threshold in E.
coli and perform further analyses on this network of 1,688
edges. For completeness, we provide the S. aureus commu-
nity network using the RegPrecise 50% precision threshold
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Figure S15: Performance evaluation for S. aureus using the RegPrecise database
(a)The Area Under the Precision Recall (AUPR) for all network inference algorithms (including the community inte-
gration) evaluated for S. aureus using the RegPrecise database as the “gold standard.” (b) The precision/recall (PR)
and receiver operating characteristic (ROC) are show with the community network highlighted in red and the top
performing algorithm in black. The remaining DREAM participant sumbissions and the off-the-shelf predictions are
shown in grey.

(988 edges) in Supplementary Data 5.

7.3 Analysis of network modules

Module detection.

We identified network modules, i.e., groups of transcrip-
tion factors and genes that are more densely connected
among themselves than expected in a randomized network
with the same degree distribution, using Newman’s spec-
tral method (including the greedy optimization step after
the spectral decomposition).62 We found that both the E.
coli and S. aureus community networks are highly modu-
lar, as shown in Figures 4a and b of the main text for
the two community networks at the 50% precision cutoff
(1,688 edges).

Gene Ontology (GO) term enrichment.

GO term enrichment analysis was performed on each of
the identified network modules for both the E. coli and

S. aureus networks. GO term gene annotations were
downloaded from the Gene Ontology websitem for E.
coli . For S. aureus, gene annotations were taken from the
Affymetrix annotation files.n GO terms under the biolog-
ical process branch of the ontology were used. Genes were
mapped directly to the ontology and propagated to the
root node. This process ensures that all parent GO terms
recursively inherit the annotations of their child terms.
GO terms annotated with less than 3 genes and GO terms
annotated with greater than 500 genes were removed. The
remaining GO terms were used as input to the GO term
enrichment calculation.

Each identified network module can be represented by a
set of genes. For each module, all associated GO term
annotations were tested by counting the number of occur-
rences of the term in comparison to the number of oc-
currences of the term in the entire network. Statistical
significance for each GO term was assessed using the hy-

mwww.geneontology.org/GO.downloads.annotations.shtml
nwww.affymetrix.com/support/support_result.affx
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pergeometric distribution. Estimated p-values were then
multiple hypothesis corrected using the q-value calcula-
tion.82

We found that the network modules—which were iden-
tified solely based on network connectivity—are also
strongly enriched for specific biological processes, i.e.,
network modules coincide with functional modules (Fig.
SS16 and Fig. SS17 show module enrichments for the
networks at the 50% precision cutoff, similar results were
obtained at different cutoffs). The genes assigned to each
module, as well as the p-values and q-values for the GO
terms, are supplied in Supplementary Data 6.

8 Experimental validation

All cultures were grown in 1 mL of indicated growth
medium in 14 mL Falcon tubes. Incubation of all cul-
tures was performed in darkened shakers (300 RPM) at
37 ◦C. Experimental conditions for growth and transcrip-
tion factor induction were all designed to reproduce the
conditions under which the induction of these transcrip-
tion factors have previously been studied. The wild-type
E. coli strain used was BW25113. Knockout strains were
constructed via transduction from the KEIO knockout li-
brary.6

8.1 Transcription factor selection

Transcription factors were selected from the E. coli com-
munity network with 50% predicted precision or greater.
Selected transcription factors had at least 8 predicted,
but untested target genes. The conditions under which
these transcription factors are active are known and can
be replicated during aerobic growth under laboratory con-
ditions.

Targets were chosen as follows. For each transcription fac-
tor, if confirmed target genes were available in the data
set, 1-2 of these geness were chosen as positive controls.
All unconfirmed target genes were used in qPCR unless
suitable primers could not be obtained for the sequence
(see Supplementary Note 8.2 for primer design speci-
fications). Where multiple targets were encoded within
a single operon, only the first gene in the operon was
used.

rhaR is the transcriptional activator of the rhamnose uti-
lization operon. Native production of rhamnose activated
genes is extremely low in the absence of a chemical in-
ducer, and induction by rhamnose is slow, requiring 40-50
minutes to reach steady state.26 Overnight LB cultures of
both wild-type and ∆rhaR E. coli were inoculated 1:500
in minimal salt media (M9) + 0.2% casamino acids + 50
µM thiamine + 0.4% glycerol. Cultures were grown to

early exponential phase (A600 ≈ 0.2, 3.5 hours) before
addition of 0.2% (w/v) L-rhamnose26 rhamnose and were
incubated 45 minutes before stabilization for RNA extrac-
tion. RNA was also extracted from untreated samples of
wild-type and ∆rhaR grown under the same conditions
but without the addition of rhamnose. As rhaR is cotran-
scribed with its confirmed target rhaS, to avoid any prob-
lems with qPCR due to possible scarring at the C-terminal
end of the rhaS transcript, the rhamnose transporter gene
rhaT was used as a positive control.

purR is active under conditions of purine nucleotide defi-
ciency. Overnight LB cultures of wild-type and ∆purR E.
coli were inoculated 1:500 in minimal salt media (M9) +
0.2% casamino acids + 6.6 µM thiamine + 0.4% glucose,
with 100 µg/mL adenine added to activate purR and re-
press purine nucleotide biosynthesis.18,73 Cultures were
grown to exponential phase (A600 ≈ 0.2, 3.5 hours) with
or without adenine, as previously described in,18,36 before
stabilization for RNA extraction. RNA was also extracted
from untreated samples of wild-type and ∆purR grown
under the same conditions but without the addition of
adenine.

gadE is a central transcriptional activator of the principal
acid resistance system.38 Overnight LB cultures of wild-
type and ∆gadE E. coli were inoculated 1:500 in minimal
salt media (M9) + 0.2% casamino acids + 0.4% glucose +
30 µM thiamine (pH 7). Cultures were grown to exponen-
tial phase (A600 ≈ 0.2, 3.5 hours) before adjustment of pH
to 5.4-5.7 by addition of 45 µL 1M HCl. Cultures were
incubated for an additional 2 hours before stabilization
for RNA extraction.16 RNA was also extracted from un-
treated samples of wild-type and ∆gadE grown under the
same conditions but without the pH adjustment.

mprA (emrR) is known to respond to toxic molecules
such as salicyclic acid (5 mM), 2,4-dinitrophenol (DNP,
0.5 mM), carbonyl cyanide m-chlorophenylhydrazone
(CCCP, 10 µM), and carbonyl cyanide p-(trifluoro-
methoxy)phenylhydrazone (FCCP).48 This transcription
factor has been shown to interact directly with DNP,
CCCP and FCCP, which reduces the capacity of mprA
to bind to DNA.15,89 Overnight LB cultures of wild-type
and ∆mprA E. coli inoculated 1:500 in LB and allowed to
grow to exponential phase (A600 ≈ 0.3, 2.5 hours) before
addition of the trancriptional inducer, 10 µM CCCP. Cul-
tures were incubated 30 minutes before stabilization for
RNA extraction. RNA was also extracted from untreated
samples of wild-type and ∆mprA grown under the same
conditions but without the addition of CCCP.

cueR is a metal-binding transcription factor and the reg-
ulator of the primary copper homeostasis system in E.
coli .83,90 Overnight LB cultures of wild-type and ∆cueR
E. coli were inoculated 1:500 in minimal salt media (M9)
+ 0.2% casamino acids + 0.4% glucose and grown to ex-

24



Modules
1 141312111098765432 15 2019181716 21 22 23

P-value
<10-6

>10-2

10-4

G
O

 te
rm

s

Figure S16: Functional enrichment of network modules in E. coli
Network modules are strongly enriched for very specific biological processes, with only few processes being enriched
across more than one module. Only network modules that comprise at least five genes are shown.
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Figure S17: Functional enrichment of network modules in S. aureus
Network modules are strongly enriched for very specific biological processes, with only few processes being enriched
across more than one module. Only network modules that comprise at least five genes are shown.
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ponential phase (A600 ≈ 0.2, 3.5 hours) before addition
of CuSO4 (500 µM). Cultures were incubated 15 minutes
before stabilization for RNA extraction. RNA was also ex-
tracted from untreated samples of wild-type and ∆cueR
grown under the same conditions but without the addition
of CuSO4.

8.2 RNA Extraction and qPCR

Cultures were stabilized with RNAprotect Bacteria
Reagent (Qiagen) according to the manufacturerâĂŹs
protocol, and resulting cell pellets were stored overnight
at −80 ◦C. RNA extraction was performed using RNeasy
Mini Kit (Qiagen) and DNA contamination was elimi-
nated using TURBO DNA-Free (Ambion, Austen, TX)
according to the manufacturersâĂŹ protocols. Sample
concentration was estimated using the ND-1000 Nan-
oDrop spectrophotometer. Standard PCR using Taq poly-
merase and qPCR primers was used to test for DNA con-
tamination in RNA samples after TURBO DNA-Free di-
gestion (4% RNA suspension by volume, 30-35 cycles).
RNA was stored at −80 ◦C.

cDNA for qPCR was synthesized from RNA using the Su-
perscript III First Strand Synthesis kit (Invitrogen) and
stored at −20 ◦C. rrsC and rrsH were used as endoge-
nous standards. Quantitative PCR primers for each tran-
script of interest and the reference transcripts were de-
signed based on the NCBI E. coli K12 MG1655 genomic
sequence (Refseq NC_000913)o using Primer3Plus soft-
ware86 (Table S1). Primers were designed under the fol-
lowing constraints: amplicon size was 100-120 bp, the cal-
culated primer melting temperature was 55 ◦C, GC con-
tent was 45-55%, and probabilities of primer-dimer/ hair-
pin formations were minimized. Primer specificity was
confirmed via standard Taq polymerase PCR on genomic
DNA.

qPCR reactions were prepared manually using the Light-
Cycler 480 SYBR Green I Master Kit (Roche Applied Sci-
ence) according to the manufacturer’s instructions. qPCR
reactions were performed with a total volume of 20 µL,
containing 0.5 µM of forward primer and 0.5 µM of reverse
primer and 10 µL 2× 480 SYBR Green Master Mix. Re-
actions were carried out in white LightCycler 480 96-well
plates (Roche). One negative control (replacing cDNA
with PCR H2O) was performed for each primer set in all
qPCR runs. PCR parameters were: denaturation (95 ◦C
for 10 minutes), 30-35 cycles of three-segment amplifica-
tion (95 ◦C for 10 seconds, 50 ◦C for 10 seconds, 72 ◦C for
10 seconds). The thermal cycling program was concluded
with a dissociation curve (65 ◦C ramped to 95 ◦C, 10 sec-
onds at each 1 ◦C interval) to detect non-specific ampli-
fication or primer-dimer formation. Cp values were ob-

owww.ncbi.nlm.nih.gov/RefSeq

tained from the Roche LightCycler 480 software set with
default parameters for basic relative quantification analy-
sis. Results were recorded as relative fold change expres-
sion after normalization using reference gene expression
as detailed in.65 qPCR was performed using 3 biological
replicates; technical duplicates were performed on sepa-
rate days to assess variability. Full results can be found
in Supplementary Data 7 and a summary of the qPCR
fold changes is shown in Figure SS18.

9 Methodological insights

In the evaluation across E. coli , S. cerevisiae, and in silico
datasets, 10 teams and 2 off-the-shelf methods achieved
an overall score of more than 10 and could thus be re-
garded as above average. Three of these successful teams
used meta analyses (Meta 1-3, compare Supplementary
Note 10) combining mutual information, z-scores, and
correlation. The two off-the-shelf methods in this selec-
tion tested for mutual information in order to detect true
gene regulatory interactions (Mutual Information 1 and
2). Lasso performs quite well (5 teams, Regression 1-5)
if a proper stability selection approach (e.g. bootstrap-
ping) is used. The remaining two teams (highest overall
scores) applied novel, specifically designed network infer-
ence approaches based on random forests and ANOVA,
respectively (Other 1 and 2, compare Supplementary
Note 10). Other techniques that were applied by several
different teams included Bayesian networks, correlation,
and mutual information.

Although some base methodologies were applied fre-
quently, extensive team specific modifications were imple-
mented with significant effects on the resulting predictions
(comparisons between teams) and team ranking. Data re-
sampling techniques such as bootstrapping were of key
importance for method performance. Lasso, for instance,
due to its low computational complexity, is well suited
for resampling techniques. Here, prediction improvements
justified the added cost for repeated sampling. Five out
of the ten most successful teams according to the overall
score applied Lasso with resampling with the overall ranks
of 3, 4, 6, 7 and 10. Two approaches of the regression cate-
gory neglected resampling (Regression 7 and 8) and conse-
quently exhibited a significantly lower performance (over-
all tranks of 26 and 32 out of 35 approaches). Lasso uti-
lizes the coordinate descent procedure30 that identifies a
topology that is optimal with respect to a penalty parame-
ter. Depending on this penalty parameter, Lasso preferen-
tially selects regulators that independently contribute to
the expression control of target genes. Bayesian networks
are another class of network inference approaches that
enforce an analogous conditional indepence assumption.
However, Bayesian networks were not among the top ten
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Figure S18: Experimental support for newly predicted interactions
From the E. coli community network, 53 novel predictions for 5 transcription factora (TFs) were tested experimentally
(+6 positive controls, i.e., known targets from RegulonDB that were recovered by the community). For each predicted
target gene, the expression levels were measured through qPCR in the presence and absence of TF inducer, both in
wild type (WT response) and TF deleted strains (KO response) (three biological replicates for each condition). 20
predicted targets with a clear difference between WT and KO response to TF induction (fold-change>2) were considered
strongly supported. 3 predicted targets that are borderline (fold-change>1.8) were considered weakly supported.
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teams although several of them performed repeated sam-
pling. This difference in performance might be explained
by the different search strategies employed by Bayesian
networks and Lasso. In contrast to the coordinate de-
scent procedure used by Lasso, heuristic searches utilized
by Bayesian networks cannot guarantee that an optimal
topology will be detected.

Cluster 4 in the PCA plot (compare Supplementary
Note 4 and Figure 2c in main text) captures methods
from the categories Meta and Other. In addition, this
cluster includes unusual method variants such as Mutual
Information 1 (CLR) which uses a special scoring scheme
that rescores a given TFx − TGy edge to reflect TGy and
TFx in the distribution of all target genes and all tran-
scription factors, respectively. Similarly, Bayesian 6 is
the only method using dynamic Bayesian networks, Re-
gression 2 is the only method using group Lasso,91 and
Regression 7, which is the only participating Lasso imple-
mentation neglecting stability selection. The only meta-
method not found in cluster 4 is Meta 6, which combines
correlation with mutual information and accordingly falls
into the correlation/mutual information cluster.

The analysis of network motifs (Figure 2c in main text)
revealed that different approaches performed best at cap-
turing different regulatory relationships. The motif bias
patterns of methods based on Bayesian networks and
Lasso were very similar. Both classes of approaches pref-
erentially select transcription factors as regulators that
independently contribute to the expression control of a
target gene. Such an independence assumption does not
hold for genes regulated by mutually dependent transcrip-
tion factors, which are therefore difficult to detect by these
approaches. Thus, Bayesian networks as well as Lasso
preferentially predict cascade motifs, i.e., they miss the
additional edges that are part of feedforward loops. In
turn, target genes regulated by linear transcription fac-
tor pathways are harder to detect by mutual information
and correlation based approaches. Analogous to Bayesian
networks and Lasso, correlation and mutual information-
based methods also exhibit similar bias patterns in our
network motif analysis. The direct comparison between
these two motifs showed that methods seem to be merely
able to shift preferences. Whereas lasso based methods
might be able to resolve more cascade motifs correctly (in
comparison to mutual information-based methods) they
are prone to detect fewer of the existing feed-forward
loops.

The strongest motif specificities are exhibited by methods
that specifically take transcription factor deletion exper-
iments into account. Obviously, the deletion of a tran-
scription factor can be exploited to infer the downstream
targets of this transcription factor. Exploiting transcrip-
tion factor deletion experiments also markedly improves
inference of high-outdegree transcription factors and high-

indegree target genes. This is partly due to the fact that
transcription factor deletions were carried out preferen-
tially for transcription factors that regulate many genes.
These experiments also help to orient the direction of in-
teractions where both interaction partners are transcrip-
tion factors. Lasso based techniques are the only other
class of approaches that are (albeit to a much lesser de-
gree) able to distinguish edge orientation. On the other
hand, all approaches that used transcription factor dele-
tions had more pronounced problems (in comparison to
Lasso) avoiding the prediction of false indirect effects in
cascade motifs. In a cascade motif, there is an indirect reg-
ulation A→ B → C but no direct regulation A→ C. If a
measurement of the deletion of A is available, it frequently
shows effects of a similar kind both on B and C. However,
most methods specifically using transcription factor dele-
tions do not distinguish well between direct and indirect
effects and thus wrongly predict a false positive A → C
interaction.

Apart from the restrictions on cascade motifs, the above
observations suggest that knockouts are particularly infor-
mative for network reconstruction. We confirmed this con-
clusion using a machine learning framework that allowed
us to evaluate the information content of different exper-
iment types (see Supplementary Note 5.2). It is thus
surprising that many established inference approaches ne-
glect to exploit this information.

In contrast to Lasso that performed better on the artificial
datasets, mutual information and meta-methods worked
better on experimental data. The good performance of
the meta methods contributes to the overall message of
the present paper, i.e., that combinations of different ap-
proaches frequently perform better than the underlying
individual methods. We also found that — especially on
the experimental datasets — Pearson correlation performs
comparable to mutual information and Spearman corre-
lation: capturing non-linear relationships between tran-
scription factor and target gene expression proved of lim-
ited advantage.

10 Network inference methods

All participating teams of the challenge were required to
submit a detailed description of their network inference
methods. The method descriptions of 15 out of 29 teams
are included in the following sections. The remaining
teams chose not to disclose a detailed description of their
method, an option that we allowed to encourage applica-
tion of yet unpublished inference methods (see Table 1
for short descriptions of these methods).

In addition, we tested six commonly-used off-the-shelf al-
gorithms on the DREAM5 network inference challenge
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data to provide readers with a point of reference regard-
ing algorithm performance. These algorithms were run
by the organizers of the challenge using default param-
eters to best simulate a user running the network infer-
ence method “naïvely” on the data, without optimizing or
tuning its parameters. Note that only the independent
submissions by the different challenge participants were
used to form the integrated community networks — the 6
off-the-shelf methods were not included. The off-the-shelf
methods are distinguished from the methods applied by
the challenge participants by a “*” in their section heading
below.

10.1 Regression 1 – Inferring gene reg-
ulatory networks with the stabilized
Lasso

This approach to gene regulatory network (GRN) infer-
ence is based on the assumption that the expression level
of the transcription factors that directly regulate a tar-
get gene are the most informative, among all transcrip-
tion factors, to predict the expression level of the target
gene. We therefore reformulate the problem as a feature
selection problem: for each given target gene, which sub-
set of transcription factor allows to best predict the ex-
pression of the target gene across experiments? To solve
this feature selection problem, we use a Lasso sparse re-
gression approach84 combined with stability selection59 to
score the candidate features. We then rank all candidate
transcription factor-target gene regulations by decreasing
stability score to produce the final GRN prediction. This
method will be described in more detail in.35

Data preprocessing. We started from the N × P raw
gene expression matrix, which provides the expression
level of the N genes in P experimental conditions. We
wanted to investigate the performance of this approach
without any refinement based on biological assumption,
and therefore followed a completely “agnostic” approach
where we discarded any information about the genes and
the experimental conditions. As preprocessing, we simply
centered and scaled to unit variance the expression lev-
els of each gene, a standard procedure in the regression
setting.

Splitting the GRN problem into many feature selection
subproblems. In order to infer the global GRN, we treated
each target gene in turn and tried to predict its direct
regulators among all transcription factors. We therefore
created N subproblems, where each subproblem focuses
on a particular target gene. For a given target gene, we
extracted the vector of expression of the target gene across
the P experiments, and similarly extracted the matrix of
expression of all candidate regulators across the P exper-
iments. Note that if the target gene is not a transcription

factor, then all transcription factors are candidate regula-
tors. If the target gene is a transcription factor, then we
considered all other transcription factors as candidate reg-
ulators, since this method cannot predict self-regulations.
We then formalized the subproblem as a feature selection
problem: which transcription factor among the candidate
regulators are sufficient to explain the expression varia-
tions of the target gene?

Feature selection with Lasso regression. We solve the
feature selection problem with the Lasso procedure.84 In
short, we estimated a linear model to predict the expres-
sion of the target gene from the expression of the can-
didate regulators. The Lasso procedure led to a sparse
linear model, i.e., to a linear model based only on a few
transcription factors. The transcription factors selected
by Lasso are therefore good candidates to regulate the
target gene. We used the LARS algorithm25 to solve the
Lasso regression.

Stability selection. The direct use of Lasso to select tran-
scription factors has two shortcomings. First, it is known
to be an unstable procedure in terms of selected features.
Second, it provides no confidence score for the selected fea-
tures, which makes it difficult to aggregate the transcrip-
tion factor selected for different target gene in a unique
final list. We therefore performed a procedure known as
stability selection59 in order to overcome both issues. In
short, for each subproblem, we generated many Lasso re-
gression sub-subproblems by randomly varying the exper-
iments and the candidate transcription factor used in the
regression. The final score of a transcription factor-target
gene is the number of times it was selected in the top
5 transcription factors by the Lasso in the correspond-
ing sub-subproblems. We then ranked all transcription
factor-target gene pairs by decreasing score.

Discussion. We proposed a fully automatic procedure to
infer regulations, based on well-established procedures for
feature selection. We discarded any biological information
about the genes and experiments, such as the presence of
replicates, time series or knock-down experiments, to as-
sess the performance of a fully “agnostic” procedure. The
method was among the top performers in the in silico
challenge, and was less accurate on the real microarray
data (see Results).

The idea to formulate a GRN as a series of feature selec-
tion problems has been proposed before, e.g., by the GE-
NIE3 method40 (also see Supplementary Note 10.13).
Interestingly, the combination of Lasso with feature se-
lection bears similarity with the GENIE3 method, which
is based on randomized decision trees. The fact that
both methods performed well in DREAM5 suggests that
the principle of feature selection by randomized stabil-
ity selection may be a powerful approach for GRN infer-
ence.
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10.2 Regression 2 – Network inference with
regularized linear regression meth-
ods

This submission to the DREAM5 network inference chal-
lenge is an application of linear regression methods. For
each network, we split up the problem gene-by-gene and
estimate the set of directed edges that point to a partic-
ular target gene by fitting two paired regression models.
First, for steady-state (i.e., non-time-series) data, the ex-
pression of target gene g is modeled as a linear function of
the expression levels of all transcription factors, excluding
g if it is a transcription factor. Second, for time-series
data, the rate of change in the expression of g is modeled
as a linear function of the expression levels of all tran-
scription factors and of g itself to account for decay of
gene product. Experiments with knock-out/deletion of g
are omitted for the regressions. While rare, these experi-
ments provide information that helps distinguish an edge
pointing from g to h rather than in the opposite direction
from h to g.64

Expecting shared patterns of active transcription factors
in the two regressions, we combine them into a single
model, which we fit using the group Lasso.91 This regu-
larization technique ensures that the (sparse) sets of tran-
scription factors inferred for the two data types are the
same. Finally, we apply bootstrapping to produce confi-
dence levels, which serve as the basis for the submitted
ranked list of edges.

Data preprocessing. We averaged all expression levels
over technical replicates. For later reference, write n1 for
the number of averaged steady-state data points, and n2

for the number of averaged time-series data points (one for
each time point that has experimental conditions equal
to those of the immediately following time point). All
subsequent calculations with these data used weighting to
account for the fact that different numbers of technical
replicates were averaged.

Combining time-series and steady-state models. The
steady-state data was modeled with a linear regression in
which the expression level of target gene g was the re-
sponse and the expression levels of the transcription fac-
tors were the predictors. The linear regression model for
the time-series data had as a response the change in ex-
pression of g divided by the amount of time between the
current and the subsequent time points. In this regression,
the current expression levels of the transcription factors
and of g are the predictors.

We combined the two models into a single regression
model with n1 + n2 data points. We allowed for differ-
ent variances between the two data parts but, for com-
putational ease, pre-estimated and thereafter treated as
known the ratio of the two variances. To estimate the ra-

tio, we computed a sample variance for the steady-state
data, and for the time-series data, we estimated the vari-
ance in a linear regression that included an intercept and
an auto-regressive term (expression of target gene g at the
current time point).

Applying the group Lasso. For a fixed target gene, g,
let βj and γj be the regression coefficients for transcrip-
tion factor j in the steady-state and the time-series part,
respectively. We computed estimates of these coefficients
by minimizing the sum of the (weighted) residual sum
of squares and a group Lasso regularization term that
promotes sparsity by penalizing nonzero regression coef-
ficients. The regularization term is the product of a tun-
ing parameter λ and a sum over all involved transcription
factors, with the jth transcription factor contributing the
square root of β2

j + γ2
j to the sum. Neither the intercepts

nor the auto-regressive coefficient are penalized.

With this group Lasso penalty, the estimates of βj and
γj are either both zero or both nonzero. Hence, the pair
(βj , γj) represents a single transcription factor across both
steady-state and time-series data. The pair being nonzero
corresponds to an edge from the jth transcription factor
to the target gene. We remark that each coefficient pair is
associated with two orthogonal predictors, which allowed
for fast minimization of the objective function.29,70 In the
group Lasso approach, larger values of the penalty param-
eter λ encourage greater sparsity of the inferred network.
The inferences were based on six values of λ (as fixed frac-
tions of the smallest value that yields zero estimates of all
βj and γj).

Bootstrapping. For each value of λ, we resampled 200
datasets by drawing, with replacement, a sample of size n1

from the averaged steady-state data and a sample of size
n2 from the averaged time-series data. We then applied
the group Lasso procedure to each combined data set and
determined the fraction of times each transcription factor
appeared in the model for the considered target gene dur-
ing the bootstrap resampling. These fractions were then
averaged over the different values of λ to produce the sub-
mitted “confidence levels.”

Discussion. This method was one of the best-performing
methods for the in silico network, but did not perform
as well on the two in vivo networks. While correctly in-
ferring a higher level of sparsity in the in vivo networks,
the method yielded fewer nodes with high in-degree and
more nodes with high out-degree than there are in the
in vivo gold standards. The performance on the in vivo
networks may have been hurt by any one of the model-
ing assumptions, including linearity, as well as the limited
preprocessing of the data.
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10.3 Regression 3 – Sparse piecewise linear
regression based on changepoint pro-
cesses

The idea behind this approach is to apply a Bayesian
piecewise linear regression model based on a multiple
changepoint process to all genes, where the explanatory
variables are taken from the set of candidate regulatory
genes provided by the DREAM5 network inference chal-
lenge. The multiple changepoint process acts on a linear
ordering of the chips, resulting from a preprocessing step
that takes exogenous information about experimental con-
ditions and perturbations into consideration. Inference
is based on reversible jump Markov chain Monte Carlo
(RJMCMC). Owing to the high computational costs, a
preprocessing step based on L1-regularized linear regres-
sion (Lasso) is included. The individual steps are dis-
cussed in more detail below.

Data preprocessing. All gene profiles were standardized
to zero mean and unit variance.

Chip ordering. The multiple changepoint processes (de-
scribed below) are based on a chip ordering. This ordering
is based on experimental conditions and perturbations,
and has been obtained as follows: (1) Chips belonging
to the same experimental conditions and perturbations
were grouped together, and an average expression pro-
file for that group was computed. (2) The first principal
component in the space of average expression profiles was
computed and used to initialize a one-dimensional self-
organizing map (SOM).p (3) The SOM learning algorithm
was applied to obtain an ordering of groups. (4) Within
each group, chips were ordered by the same process: Ini-
tialization of a one-dimensional SOM with the first prin-
cipal component, followed by the application of the SOM
learning algorithm. (5) The final chip ordering was given
by the ordering thus obtained, subject to a manual cor-
rection to enforce the natural ordering of time series and
perturbation dilution series as a rigid constraint.

Active interventions. Active interventions, like gene
knockouts, were dealt with in the regression model by pre-
senting inferred values only for the explanatory variables,
but removing them for the target variable.

Gene filtering. Due to the high computational costs of
the RJMCMC simulations, we applied a filtering step
based on the modified Lasso approach proposed by Ahmed
and Xing,2 which is implemented in the software pack-
age TESLA. This method can be regarded as a piece-
wise linear sparse regression approach that is based on
L1-regularization with group-specific regression parame-
ter vectors. In addition to the standard L1-norm penalty

pWe used the R package som available on CRAN
(http:cran.r-project.org)

term an additional L1-norm regularization term was in-
troduced, which penalizes deviations between vectors of
regression parameters associated with different groups.
The groups correspond to different experimental condi-
tions and perturbations, as described above. The regular-
ization constants were set so as to optimize the BIC score.
We modified the original TESLA code to switch from lo-
gistic to linear regression. However, for lack of time we
did not reprogram the function for computing the likeli-
hood, and hence computed the BIC score with the original
code based on logistic regression. For each gene, poten-
tial regulators were ranked according to the modulus of
the regression parameter. The 20 highest-ranked regula-
tors (corresponding to about 10% of of all regulators) were
kept for the follow-up analysis.

Bayesian piecewise linear regression model. We adapted
the model presented in45 to create a piecewise linear re-
gression model for the regulation of each gene, given its
transcription factors. This model can learn the struc-
ture of the underlying regulatory network, as well as
changepoints in the linear ordering of chips which sep-
arate different experimental conditions or perturbations.
We incorporated sparse Poisson priors on the number of
changepoints and the number of potential regulators for
each gene. In contrast to,45 this model assumes that the
structure of the transcription factor-target gene interac-
tions do not change with different experimental condi-
tions, only the parameters associated with these interac-
tions do. We learned the structure and parameters using
RJMCMC.

RJMCMC simulations. The RJMCMC simulations for
inferring changepoints and parameters of the Bayesian
regression and multiple changepoint model were run on
two high-performance computer clusters. For data set 2,
simulations were started from two different initializations,
and scatter plots of the marginal posterior probabilities
of the edges were obtained for monitoring convergence.
For 2× 106 RJMCMC steps these scatter plots indicated
sufficient convergence, but it turned out that these sim-
ulations could not be finished in time. We therefore had
to reduce the simulation lengths to 105 RJMCMC steps,
despite the fact that the scatter plots indicated a certain
lack of convergence. The method could only be applied to
data sets 1 and 2 for lack of time.

Submitted edge orderings. The submitted edge orderings
were obtained as follows. For each target node, a set of
20 potential regulators passed the filter based on TESLA,
corresponding to roughly 10% of the potential incoming
edges. For these regulators, the original intention was
to order the edges on the basis of the marginal poste-
rior probabilities from the RJMCMC simulations. How-
ever, owing to hardware-related problems with the com-
puter cluster (see below), the RJMCMC simulations did
not reach the desired convergence level by the DREAM
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deadline. To guard against false negatives resulting from
potential entrapment of MCMC trajectories in metastable
states, we computed the ranking from the arithmetic mean
of the marginal posterior probabilities and the modulus of
the corresponding regression coefficients, where the latter
were rescaled to the unit interval. After ranking all the
node-regulator pairs for those regulators that had passed
the filter, the remaining edges were ranked on the basis
of the modulus of the regression parameter obtained with
TESLA. For those data sets for which no RJMCMC simu-
lations could be run (see below), the rankings were solely
based on the modulus of the regression parameters from
TESLA.

Discussion

This method was among the top quarter of performers by
overall performance, even though we had to grapple with
some difficulties, which were as follows:

Data preprocessing. We spent substantial time on the
preprocessing and the chip ordering, where we made var-
ious worrying observations. The correlation of the regres-
sion parameters obtained with Lasso from data subjected
to different preprocessing schemes were rather modest, in-
dicating that the preprocessing of the data matters a lot.
Without explicit knowledge about the biological processes
it is difficult to decide on the appropriate choice, and in
the absence of this information we opted for a standard-
ization to transform all gene profiles to zero mean and
unit variance.

Chip ordering. In this approach, information about exper-
imental conditions and perturbations resides in the chip
ordering. It turned out that a one-dimensional ordering
cannot group both the same experimental conditions and
the same perturbation types together. This suggests that
a two-dimensional multiple changepoint model would be
a more appropriate approach. However, in the available
time this model could not be implemented and tested,
and we therefore decided to stick to the one-dimensional
approach. Preliminary analysis based on TESLA showed
poor correlation between the regression parameters ob-
tained from different chip orderings. This indicates that
the chip ordering matters a lot, but without extra bio-
logical knowledge it is impossible to decide what mat-
ters most: the experimental conditions, or the perturba-
tions.

RJMCMC simulations. The net time available for the
RJMCMC simulations - following the preprocessing steps
and associated investigations - was about two weeks. Un-
fortunately, external circumstances beyond the control
caused extended downtime of one of the computer clus-
ters. As a consequence, the RJMCMC simulations could
only be completed for two out of the four data sets, and
even here the convergence was sub-optimal.

Lack of consistency between the methods. While we
expect that the Bayesian regression and multiple change-
point model should achieve an improvement one TESLA,
we were surprised by how low the edge rank correlations
between the two methods were. This might be indicative
of a certain paucity of true patterns in the data, possibly
as a consequence of the choice of the pre-processing and
chip ordering schemes.

Future Work. The proposed method critically depends on
the pre-processing step, which is rather heuristic. Besides
looking into a more principled alternative to SOMs for
obtaining a chip ordering, especially such that explicit bi-
ological knowledge is included, we are working on extend-
ing the changepoint process to more than one dimension.
As discussed above, this would allow groups of perturba-
tions in addition to experimental conditions to be kept
together, and we would expect that to be reflected in an
improved network reconstruction accuracy.

10.4 Regression 7 – Simple L1-
regularization

In a graphical model, an edge between two variables means
that these two quantities are conditionally dependent,
given the remaining variables. In this case, these vari-
ables are genes, and for each gene we would like to find
the transcription factors that (directly) influence a respec-
tive gene. This means we are looking for those target
genes and transcription factors which are conditionally de-
pendent, given the other transcription factors. For that
purpose, target genes are regressed on the transcription
factors. Non-zero regression coefficients indicate (condi-
tional) dependencies, whereas (conditional) independence
is indicated by zero coefficients. To identify zero and
non-zero coefficients, we use L1-type regularization tech-
niques.

Data preprocessing. In order to detect sets of genes shar-
ing common expression patterns we employed a clustering
approach consisting of two steps: (1) computation of the
pairwise similarity between genes and (2) the detection of
clusters. As a similarity score (cf. (1)) we employed the
Spearman correlation on the given raw data (i.e. using a
data point per chip and gene from the provided data ma-
trices). The pairs of genes with a Spearman correlation
of above 0.8 were subjected to Markov clustering (cf. (2))
using an inflation parameter of 3.0. The data provided by
DREAM5 shows a noticeable clustering structure. The
identified clusters show very little between-gene variabil-
ity suggesting to treat the gene clusters as a single entity
when used as the response variable in the regression model
(see below).

L1-Regularization using the Lasso. We used an adaption
of the method proposed by58 who dealt with estimating
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high-dimensional (undirected) graphs under the assump-
tion of a multivariate normal distribution. In this special
case, the method can be seen as an approximate version of
a method proposed by.30 The latter approach estimates
the inverse covariance matrix (

∑−1) of a high-dimensional
multivariate normal distribution, with the sum of abso-
lute values of the elements of this matrix being penalized.
On one hand, the use of a penalty makes the matrix es-
timable; on the other hand, the chosen L1-type penalty
causes that some elements of the estimate of

∑−1 were
set to zero. Zero elements (

∑−1)ij in the inverse covari-
ance matrix mean that the variables (or genes in this case)
i and j are conditionally independent given the remaining
variables (genes). In the situation given in the DREAM5
competition, however, the method30 cannot be used, since
no independent and identically distributed samples from
a multivariate normal distribution are given. In addition,
the estimated graph should be directed. In,58 by con-
trast, the authors try to find conditional dependencies by
regressing each gene separately on the remaining ones. A
similar procedure can be applied to the DREAM5 data.
A zero regression coefficient indicates that the target gene
(the response) is not influenced by the respective explana-
tory gene (the regressor), given the other genes. To locate
zero coefficients, a Lasso84 penalty was used, so regression
coefficients may be set to zero. Non-zero coefficients in-
dicate conditional dependencies, and edges can be drawn
from the corresponding explanatory genes to the target.
This procedure was repeated with each gene serving once
as the response. By construction, the resulting graph is
directed. Since only transcription factors may regulate
other genes, only transcription factors are considered as
(potential) regressor genes (but all genes may serve as re-
sponse). If any of the (potential) effector genes are deleted
or over-expressed, this information is taken into account
by adding indicator variables to the set of explanatory
genes. If such an indicator is selected by the Lasso, an
edge between the corresponding effector gene and the con-
sidered target is drawn as well. Also permutations can be
taken into account by using indicator variables. If data
come from time series, the considered target gene is also
regressed on lag one of the transcription factors.

Obtaining confidence scores. We did not use stability
selection59 to compute confidence scores, but a more sim-
ple procedure. The Lasso, which is applied to the single
regression problems to select variables (that is, effector
genes), depends on a tuning parameter t, which deter-
mines the strength of penalization. More precisely, the
residual sum of squares is minimized as a function of re-
gression parameters b1, . . . , bp, subject to |b1|+ . . .+ |bp| <
t. The smaller t, the higher the penalty and the less vari-
ables are selected. To derive a measure of confidence, we
used the value of the tuning parameter where a consid-
ered edge is selected the first time. After normalization
with respect to the most/least reliable edges (out of the

first 100,000), these scores have values between zero and
one.

Discussion. Though L1-type regularization seems promis-
ing for the selection of edges in a gene regulatory network,
the performance of this approach was rather bad on the
DREAM5 data. This may be for two reasons. First, se-
lection patterns of single regression models are rather un-
stable and hence less reliable. Second, it is doubtful that
tuning parameters from different regression models can be
directly compared. That means it is difficult to rank po-
tential edges selected in regression models with different
target genes. Tough stability selection is computationally
much more expensive than the simple approach directly
using the Lasso tuning parameter, it is apparently more
reliable when judging on the relevance of edges in the net-
work.

10.5 Regression 8 – Linear regression*

Linear Regression is one of the 6 commonly-used, off-the-
shelf algorithms run by the DREAM organizers.

A full description of this method can be found in28 and is
made available online.q This method was implemented as
an attempt to estimate a Bayesian network. The compu-
tational challenge underlying Bayesian networks for gene
regulatory network inference is to exhaustively search the
space of possible regulatory relationships. Given the size
of the DREAM5 datasets and number of regulatory re-
lationships to be inferred a true implementation of a
Bayesian network is intractable. By constraining the num-
ber of regulatory relationships considered and simplifying
the mathematical model to a linear regression, a regula-
tory network can be inferred from the DREAM5 data.
Given the underlying linear regression model and algo-
rithm clustering results shown in Figure 2, this method
was placed in the Linear Regression group.

10.6 Mutual Information 1 – Context Like-
lihood of Relatedness (CLR)*

CLR is one of the 6 commonly-used, off-the-shelf algo-
rithms run by the DREAM organizers.

A full description of this method can be found in28 and is
made available online.r The input into the CLR algorithm
is a gene × condition matrix of expression values. The
CLR algorithm progresses through 2 main steps. First, a
matrix of mutual information values is calculated for all
input pairs of genes i and j. As the authors suggest, mu-
tual information was calculated using B-spline smoothing
and the gene expression values were discretized into 10

qhttp://gardnerlab.bu.edu/data/PLoS_2007/
rhttp://gardnerlab.bu.edu/data/PLoS_2007/
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bins. Second, CLR estimates the significance of a gene
pair by comparing the mutual information value between
gene i and j to a empirically defined background distribu-
tion of mutual information values. The significance of a
gene pair is defined by a modified z-score. Transcription
factor-target gene predictions are ranked according to the
modified z-score and the highest scoring gene pairs are
selected.

10.7 Mutual Information 2 – Mutual infor-
mation*

Mutual information is one of the 6 commonly-used,
off-the-shelf algorithms run by the DREAM organiz-
ers.

A full description of this method can be found in28 and is
made available online.s For two random variables, X and
Y , mutual Information is defined as:

I(X;Y ) =
∑
i,j

P (xi, yi) log
p(xi, yi)

p(xi)p(xj)

In this implementation, variables X and Y represent a
transcription factor and target gene, respectively. Mutual
information calculations require discretized data and as
gene expression data from microarrays are continuous, a
B-spline smoothing and discretization method is used.22
The number of bins was set to 10 as suggested by the
authors. Final transcription factor-target gene predictions
were ranked and selected based on the highest to lowest
mutual information scores.

10.8 Mutual Information 3 – Algorithm for
the reconstruction of accurate cellular
networks (Aracne)*

Aracne is one of the 6 commonly-used, off-the-shelf algo-
rithms run by the DREAM organizers.

A full description of this method can be found in57 and
is made available online.t As input, Aracne accepts a
matrix of gene × condition expression values and a list
of defined transcription factors. The Aracne algorithm
can be separated into 2 main steps. First, a matrix
of mutual information values is calculated for all input
pairs of genes i and j. Aracne estimates mutual infor-
mation using the Gaussian Kernel estimator.8 Statisti-
cally significant relationships are determined and the non-
significant edges are removed. Second, an additional prun-
ing step is performed based on the the theoretical property
known as the data processing inequality (DPI).21 Given

shttp://gardnerlab.bu.edu/data/PLoS_2007/
twiki.c2b2.columbia.edu/califanolab

a gene interaction network, the DPI aims to eliminate
any edges that can be explained through the remaining
interactions in the network. Consider the small network
gi ↔ gj , gj ↔ gk, gi ↔ gk, an edge between gi and gj
will be removed if I(gi, gj) ≤ min[(gi, gk), (gj , gk)]. After
pruning, the remaining transcription factor-target gene re-
lationships are then ranked based on their mutual infor-
mation values.

The Aracne software package has several parameters that
can be adjusted by the user. As stated, default param-
eters were used to best estimate a naïve application of
Aracne, however, it should be noted that better results
are likely to be achieved after tuning of two parameters,
1) the mutual information p-value cutoff, and 2) the DPI
tolerance parameter.

10.9 Mutual Information 4 & 5 –The
DREAM5 network inference challenge
with a combination of fast tools

In the DREAM5 network inference challenge, the task is
to discover relationships between genes from four gene
expression datasets. We use mutual information and
Fisher’s score as the scoring function to compute a prob-
abilistic dependency between pairs of variables, and com-
bine it with the BLCD-HITON-PC search algorithm52 to
find the Y arcs in the network. An example of a Y sub-
structure is A → C, B → C, and C → D. The Y sub-
structures have special properties that make causal discov-
ery possible under plausible assumptions. In this example
the arc C → D is a Y arc. The Y arcs in a Bayesian
network represent unconfounded causal influences under
assumptions.54 Since the Y arcs represent unconfounded
causal influences we expect that they could discover arcs
with high precision and can be used to orient some of the
edges that pair-wise mutual information and statistical
analysis (Fisher’s score) cannot accomplish.

Mutual information. We used the implementation for fast
calculation of mutual Information for all pairs of genes in
the challenge.71 For the largest network (Network 4) in
the challenge with 5950 genes and 536 chips, it took about
19 minutes to generate the pair-wise mutual information
for the entire set of genes in the system.

Fisher’s score. We used correlation coefficients (CC) im-
plemented in MATLAB to find the correlation between all
pairs of genes in the networks. This gave us additional in-
formation to access relationship for the whole set of pairs
in the network. It is also very fast, which took 27 seconds
to complete the whole run for Network 4.

BLCD-HITON-PC. We implemented the Bayesian lo-
cal causal discovery algorithm (BLCD)52,53 to efficiently
identify unconfounded direct causal relationships of gene
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variables in the network with high precision. It con-
sists of 2 steps: Markov Blanket step and Y arcs step.
For the Markov Blanket generation step in BLCD, we
used the computational causal discovery method HITON-
PC3,4 which outputs the parents and children set for each
target variable. For the Y arcs generation step, it searches
for the Y arcs locally in the parents and children set. The
second step can be run in parallel for efficiency. For Net-
work 4, we separated the Y arc discovery task into 15
groups and finished running in less than 2 and a half hours
for each group. BLCD outputs the probability of a Y arc
which we converted to a value of 1 or 0 using a threshold
of 0.5. We used binary output with threshold of 0.5 since
precision of Y arcs is high and we put higher weight than
mutual information and Fisher’s score.

Combination. We first combined the results of mutual In-
formation and Fisher/Correlation coefficients score (CC)
based on the ranking. Two ranking arrays are averaged
and normalized into one array (called MICC array) con-
taining numbers in the range from [0, 1] so that the edge
with number closer to 1 represents a stronger dependent
relationship. Secondly, this array is combined with the
BLCD binary output such that the arcs with BLCD out-
put ’1’ and their reverse arc with BLCD output ’0’ are
averaged with the MICC array. This process could fix
part of the direction problem from mutual information
and Fisher’s score. For example, I(a, b) = 0.5 represents
the confidence of which a can regulate b by mutual in-
formation or correlation coefficient or their combination;
I(a, b) == I(b, a); If BLCD outputs blcd(a, b) = 1 and
blcd(b, a) = 0, we would average the result and the fi-
nal output for these 2 arcs will be s(a, b) = 0.75 and
s(b, a) = 0.25. This could output higher precision and re-
call than transcription factor or correlation coefficient or
their combination if the BLCD output is correct.

Discussion. The reason we combine transcription factor
and correlation coefficient is based on the preliminary ex-
perimental result for similar gene expression networks. It
shows that if both mutual information and correlation co-
efficient can output good AUPR (Area under Precision
and Recall curve), their combination can produce a bet-
ter one; but it is possible that the CC performance is worse
than mutual information, and then the combination result
can be worse than the mutual information itself. So we
would rather submit 2 results: Submission DSL is based
on mutual information + correlation coefficient + BLCD-
HITON-PC, and Submission DSL2 is based on mutual
information + BLCD-HITON-PC.

There are some search strategies in BLCD based algorithm
we could optimize to improve the performance. The orig-
inal BLCD searches for Y arcs from a Markov Blanket
set of each node that is derived by greedy search; how-
ever, it is not efficient to run the greedy search for such a
high-dimensional dataset for this challenge. Thus, we run

an efficient algorithm HITON-PC to output a smaller set
(parents and children set), but it may reduce the recall.
The threshold of output would also affect the final per-
formance. If the threshold is too high (for example, 0.9),
the number of Y arcs would be very small, so it would
not change the result by just using mutual information
or correlation coefficient; if the threshold is too low (for
example, 0.1), the number of Y arcs would be very large
but the precision may be reduced, so it may not positively
affect the final result. Therefore, we use the default 0.5 as
the threshold.

10.10 Correlation 2 – Pearson’s correla-
tion*

Pearson’s correlation is one of the 6 commonly-used,
off-the-shelf algorithms run by the DREAM organiz-
ers.

Pearson’s correlation coefficient r was calculated between
all transcription factors x and all target genes y as fol-
lows:

rxy =
n
∑
xiyy −

∑
xi
∑
yi√

n
∑
x2
i − (

∑
xi)2

√
n
∑
y2
i − (

∑
yi)2

,

where n is the number of measurements of x and y. x to y
relationships were ranked via rxy, i.e. positively correlated
gene pairs receive the highers confidence.

10.11 Correlation 3 – Spearman’s correla-
tion*

Spearman’s correlation is one of the 6 commonly-used,
off-the-shelf algorithms run by the DREAM organiz-
ers.

Spearman’s correlation ρ was calculated between all tran-
scription factors x and all target genes y as follows:

ρxy = 1− 6
∑
d2
i

n(n2 − 1)
,

where n is the number of conditions that x and y have been
sampled and d is the difference in rank order between gene
x and gene y over the n conditions. x to y relationships
were ranked on ρxy and the most correlated gene pairs
were selected.

10.12 Bayesian 6 – Regulatory network in-
ference with Bayesian networks

We built a simple Bayesian network to model the influence
of a potential transcription factor on a gene. The net-
work includes observed variables for inputs, such as per-
turbations, knockouts, or overexpression applied in each
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experiment. It then relates these to hidden variables for
unobserved quantities, such as the magnitude of the in-
fluence or whether the perturbation affected this relation-
ship. These hidden variables are then related to random
variables for the observed quantities of transcription fac-
tor and target gene expression levels. An alternate net-
work for the absence of regulatory influence modeled each
expression level as an independent random variable with
random observation noise. For each possible pair of tran-
scription factor to target gene relationships (transcription
factor-target gene), we computed the relative probability
of each model (no influence, A→ B, B → A) given the ob-
servation data. The highest probability for each pair was
selected and sorted to give the final prediction.

Method. The Bayesian network used for the simplest case
of a steady-state observation experiment involving a single
transcription factor-target gene pair is shown in Figure
SS19. The nodes of the network are:

• Perturbation Enabled. If a perturbation is present
for the experiment, and which one (combinations of
perturbations were treated as a unique perturbation,
to keep the model simple).

• Affected. Bernoulli random variable for whether the
target is affected by the perturbation

• Perturbation Factor. Gaussian random variable for
the amount of perturbation

• Knockout/Overexpression Knockout or overexpres-
sion factor of the target for a given experiment

• Edge Influence. Gaussian random variable for the
magnitude of influence of the transcription factor on
the target gene

• Transcription factor Level, Target Level. Expression
levels of the transcription factor and target genes,
normalized to mean 1.0, variance 0.01 of observations
from steady-state experiments.

• Transcription factor Level Observed, Target Level Ob-
served. Observations with Gaussian noise

The null hypothesis of no relationship was a simple model
where each expression level is an independent Gaussian
random variable observed with Gaussian noise.

A more complex model was used for time series exper-
iments, a one-step dynamic Bayesian network modeling
the change in the target as a function of its prior level
and the prior level of the transcription factor. The null
hypothesis modeled each level independently as returning
to mean with some time constant.

The data were analyzed using a Bayesian network library,
to calculate the relative probability of the respective mod-
els (no edge, A → B, or B → A) given the observa-
tions. These calculations were then performed pairwise

Figure S19: Inference method design for Bayesian
6.
The organization and categorization of information for the
design of the Bayesian classifier.

for all possible transcription factor-transcription factor or
transcription factor-target gene interactions in each net-
work on an internal computing cluster, since the method
is quite computationally intensive. Transcription factor-
target gene interactions were modeled in both directions
and the highest probability taken, on the assumption that
the magnitude of influence was significant even if direc-
tionality was suspect. The 100,000 most likely edges were
then selected and sorted.

Discussion.

This method did not perform well on any of the DREAM5
data sets. There are several arbitrary constant parame-
ters in the model that define the prior distributions of the
hidden variables. These were trained on a small (50-node)
yeast network generated from GeneNetWeaver,56 using a
conjugate simplex method to find the parameter values
that gave predictions best matching the actual network.
The resulting model and parameters were then validated
on the DREAM4 dataset, on which they performed rea-
sonably. However, it was clear during the training phase
that the prediction accuracy was quite sensitive to these
parameters. It is likely that the DREAM5 datasets were
sufficiently different from the training set that the param-
eters were no longer suitable.

There are a couple of ways in which this issue can be ad-
dressed in the future. Most simply, the parameters can be
trained on the actual dataset; in the absence of a known
network, we could optimize for fit of predicted probabil-
ities to an expected distribution based upon general fea-
tures of the target network (e.g. in- and out-degree distri-
butions). This would, however, be quite computationally
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intensive. Alternately, the parameters themselves can also
be incorporated into the model as hidden variables. This
would require more complex Bayesian network modeling
algorithms, and the library we used did not support model
selection over such second-order networks (e.g. a random
variable whose mean and variance were themselves defined
by other random variables). It might also be possible to
reconfigure the Bayesian network itself to reduce its de-
pendence on such arbitrary parameters.

10.13 Other 1 – Inferring regulatory net-
works using tree-based methods

This algorithm, called GENIE3 (for “Gene Network Infer-
ence with Ensemble of Trees”), decomposes the prediction
of a regulatory network between p genes into p different re-
gression problems. In each of the regression problems, the
expression pattern of one of the target genes is predicted
from the expression patterns of all known transcription
factors, using a tree-based ensemble method called Ran-
dom Forests.13 The importance of a transcription factor
in the prediction of the target gene expression pattern is
taken as an indication of a putative regulatory link. Pu-
tative regulatory links are then aggregated over all genes
to provide a ranking of interactions from which the whole
network is reconstructed.

GENIE3 does not make any assumption about the nature
of gene regulation, can deal with combinatorial and non-
linear interactions, produces directed gene regulatory net-
works, and is fast and scalable. This method is described
in more detail in40 and available online.u

Network inference procedure. The GENIE3 procedure
works as follows:

1. For gene j = 1 to p:

- Generate the learning sample of input-output pairs
for gene j: LSj = {(xTFk , xjk), k = 1, . . . , N},
where the input xTFk is the vector of expression
values of all known transcription factor genes
(except gene j if it is a transcription factor) in
the kth experiment, the output xjk is the expres-
sion value of gene j in the kth experiment, and
N is the number of experiments.

- Use the Random Forests method on LSj to com-
pute confidence level wi,j , for each transcription
factor gene i 6= j.

2. Aggregate the p individual gene rankings to get a
global ranking of all regulatory links.

Tree-based ensemble methods. The basic idea of tree-
based methods in regression is to recursively split the

uhttp://www.montefiore.ulg.ac.be/~huynh-thu/software.
html

learning sample with binary tests based each on one input
variable (here, the expression of one potential transcrip-
tion factor). These tests are optimized in such a way as
to reduce as much as possible the variance of the output
variable (here, the expression of the target gene) in the
resulting subsets of samples. Candidate splits for numer-
ical variables typically compare the input variable values
with a threshold which is determined during the tree grow-
ing.

Single trees are usually very much improved upon by en-
semble methods, which average the predictions of several
trees. In the network inference procedure, we used the
Random Forests method,13 i.e. each tree is built on a
bootstrap sample from the original learning sample, and
at each test node, K attributes are selected at random
among all candidate attributes before determining the
best split. We used K =

√
n, where n is the number of

input variables, and grow ensembles of 1000 trees.

We selected the Random Forests method (with this value
of K) because it leads to the best performance among
other tree-based ensemble methods on the prediction of
the E. coli regulation network.40

Variable importance measure. To associate a confidence
level wi,j to the regulation of target gene j by the tran-
scription factor gene i, we directly exploit the variable
importance measure of the expression of i as derived from
the tree-based model learned for j. While several variable
importance measures have been proposed in the literature
for tree-based methods, we consider in this procedure a
measure that computes at each test node N the total re-
duction of the variance of the output variable due to the
split, defined by:14

w(N ) = #S.V ar(S)−#St.V ar(St)−#Sf .V ar(Sf )

where S denotes the set of samples that reach node N ,
St (resp. Sf ) denotes its subset for which the test is true
(resp. false), V ar(.) is the variance of the output variable
in a subset, and # denotes the cardinality of a set of
samples. For a single tree, the overall importance of one
transcription factor gene is then computed by summing
the w values of all tree nodes where the expression of this
transcription factor was used to split. For an ensemble,
the importance is then obtained by averaging importance
scores over all trees in the ensemble.

Global regulatory link ranking. Each tree-based model
thus yields a separate ranking of the transcription fac-
tors as potential regulators of a target gene in the form
of weights wi,j computed as sums of total variance reduc-
tions. The sum of the importances of all input variables
for a tree is equal to the total variance of the output vari-
able explained by the tree, which in the case of unpruned
trees (as they are in the case of Random Forests ensem-
bles) is usually very close to the initial total variance of
the output.
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As a consequence, if we trivially order the regulatory
links according to the weights wi,j , this is likely to intro-
duce a positive bias for regulatory links towards the more
highly variable genes.40 To avoid this bias, we first nor-
malized the gene expression values so that they all have
a unit variance in the training set, before applying the
tree-based ensemble method. This normalization indeed
implies that the different weights inferred from different
models predicting the different gene expressions are com-
parable.

Discussion. We developed GENIE3, a gene network in-
ference algorithm based on feature selection with Ran-
dom Forests. This method was the overall top performer
of the challenge. It was also the top performer on the
in silico generated data but did not perform as well as
some other teams on the in vivo microarray data. Inter-
estingly, setting Random Forests parameter K to n would
have significantly improved the performance on the in sil-
ico data but with a decrease of the performance on the in
vivo networks. One potential reason for the better per-
formance on the in silico benchmarks is that the in silico
dataset probably contains more statistically useful exper-
iments than the in vivo datasets in which there may be
some redundancy among the experiments or some bias in
their selection. Such differences in terms of the quality of
the data might affect more the non parametric approach
than alternative approaches that make stronger assump-
tions. Other potential reasons may originate from the fact
that the E. coli and S. cerevisiae gold standard networks
are not complete and noisy, as well as from the discrepancy
that certainly exists between the simulation model used
to generate the in silico data and the in vivo regulation
mechanisms of E. coli and S. cerevisiae. In the future, we
would like to investigate further these differences.

In principle, any feature selection algorithm74 could be
substituted to Random Forests within the general proce-
dure. Method Regression 1 (see Supplementary Note
10.1) could be seen as an instance of this procedure. We
have also carried out experiments with feature ranking
based on linear models trained with support vector re-
gression but these methods were not as successful as tree-
based ensemble methods. In the future, we plan to con-
sider other feature selection techniques.

10.14 Other 2 – Inferring gene regulatory
networks by ANOVA

This approach to network inference is based on the as-
sumption that transcription factors (TFs) and their cor-
responding target genes (TGs) exhibit mutual expression
dependencies in at least a subset of the measured experi-
mental conditions (time points, perturbations etc). Such
candidate interactions, i.e. pairs of a TF and a TG, are

ranked by a score s. The score s can be any measure
of dependency between the expression of the TF and its
TG. Frequently used measures of dependency are based
on Pearsons or Spearmans correlation coefficients, mutual
information, or in case of Bayesian network inference on
conditional probability tables.

We evaluate candidate interactions by η2,19 a non-
parametric, non-linear correlation coefficient obtained
from a two-way analysis of variance (ANOVA). It is fast,
easy to apply and does not require discretization of the
input data. Refinements of this approach also enable in-
corporation of additional information, e.g. the specific
over-expression or deletion of genes in given experiments.
This method will be described in more detail in.44

Data preprocessing. Basal gene levels can be quite dif-
ferent between experiments. To account for these differ-
ences, we transformed the absolute expression values into
expression fold changes. Fold changes were computed by
mapping each measured condition to one or more control
conditions from the same experiment. Control conditions
were defined via their set of treatments (such as knock-
out, over-expression, drug treatments) that is required to
be a subset of the treatments applied in the given mea-
sured condition. More than one fold change may be com-
puted if more than one control is available. For example,
the control conditions for an experiment where two genes
are deleted (double knockout) may be a single knockout
and/or the wild type. In the case of time series, we re-
quired the time points for measured conditions to match
the time points of the corresponding controls.

Note that each control usually has several replicates.
Fold changes were computed by subtracting the (log-
transformed) gene expression values of the controls, av-
eraged across the replicates, from the given chips. As
mentioned above, the mapping is not unique, i.e. a given
chip can have 0, 1 or more control replicate sets assigned.
For instance, from the 805 chips (487 different replicate
sets) of the E. coli compendium, we could compute gene
fold changes for 599 chips (379 replicate sets). Because
of the multiplicity of controls, we obtained a total of 935
fold changes per gene (602 replicate sets).

Comparison of TFs and putative TGs by η2. We em-
ployed a two-way ANOVA to test the differential expres-
sion of TFs and their putative TGs. The ANOVA com-
pares the means of populations that are classified in two
different ways, or the mean responses in an experiment
with two factors. The factors analyzed here are the ex-
pression of two different genes (factor or dimension A)
across a range of conditions (factor B) that is represented
as a 2 rows by 602 columns matrix.

In this analysis we tested (1) if at least two experimental
conditions exhibit significant differences in their popula-
tion means (i.e., differential expression) and (2) if these
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differences exceed the differences between the expression
of the TF and a TG. Phrased in terms of the two-way
ANOVA, the strength of an association is proportional to
the fraction of the variance across conditions (factor A)
in the total variance. Such a fraction (F -value) follows
the F -statistic, which can be used to derive the statistical
significance of the involved factors as p-values.

Refinement of the basic ANOVA. Genetic perturbations
are valuable as they help to establish directed causal rela-
tionships between regulators and their TGs. The informa-
tion whether a TF was subjected to genetic perturbations
(deletion or overexpression) was taken from the provided
chip-feature descriptions. Conditions that indicate a per-
turbation of the currently tested TF are given a higher
weight than other conditions. Informally, the weight is
processed by inserting (w-1) additional copies of such a
condition into the ANOVA matrix. Note that conditions
where non-TFs or TFs other than the currently tested TF
are perturbed receive the standard weight. We set w = 50
based on an analysis we performed on expression data ob-
tained from the M3D database27 and a gene regulatory
network obtained from RegulonDB.31

Discussion. For the detection of dependencies we pro-
posed the measure η2 that is derived from an analysis of
variance (ANOVA). To our knowledge, η2 has not been
widely applied to network inference or to other problems
in Bioinformatics, although it has a number of features
that can facilitate the detection of gene dependencies.
Like Pearson’s correlation, but in contrast to Bayes con-
ditional probability tables or mutual information, η2 does
not require the discretization of the input data. This in-
creases the robustness of this method as inappropriate
discretization might lead to loss of signal. In contrast
to Pearson’s linear correlation coefficient, η2 is a non-
parametric, non-linear correlation coefficient.

Some of the known E. coli interactions identified by
this approach were quite interesting biologically. For in-
stance, an interaction between the multiple antibiotic re-
sistance (mar) genes marA and marB was active after an-
tibiotic treatment but not in growth phase experiments.44
The measure η2 allowed us to detect such local corre-
lations arising from condition-specific interactions. This
increased sensitivity is due to the effective utilization of
replicated measurements to model the measurement er-
ror and to estimate the statistical significance of TF-TG
dependencies.

In the future, we intend to further improve this ANOVA-
based inference approach by including a dedicated treat-
ment of time series and by using conditional correlations
to distinguish direct from indirect interactions.

10.15 Other 3 – Network inference through
Boolean networks

The underlying model in this method is a Boolean net-
work where the topology and logic is inferred from contin-
uous expression data. It is based on the information theo-
retic conditional entropy criterion,5 but assumes that the
Boolean state of the network is not directly observed. In-
stead we are given a dataset of continuous measurements
that reflect probabilistically the Boolean state.

For every gene X, we want to find the set of regulators
Y that give the best conditional entropy score H(X|Y )
among all sets of putative transcription factors up to some
size limit. Since conditional entropy is computed for dis-
crete random variables, and we have continuous measure-
ments, we first transform the continuous data into a set
of discrete observations. The simplest way would be to
discretize the continuous data, e.g. set all values above
some threshold to 1 and all values below it to 0. Instead,
we interpret a vector of continuous values as a probabil-
ity distribution over all possible Boolean vectors of the
same dimension. To put it simply, instead of creating one
Boolean vector with probability 1 for every continuous
vector, for every continuous vector we create all possible
Boolean vectors of the same dimension, and assign each
such vector a probability. The probabilities are chosen as
follows: we first normalized the continuous expression val-
ues of every gene to have mean 0 and standard deviation
1.5 (a value determined empirically). After normaliza-
tion, we set the probability that a single (one-dimensional)
continuous value c corresponds to the Boolean value 1 to

1
1+e−c (the logistic function with input c). The probabil-
ity that a continuous vector c̄ corresponds to a specific
Boolean vector b̄ then becomes:

p(b̄|c̄) =
∏
bi=1

1

1 + e−ci

∏
bi=0

(
1− 1

1 + e−ci

)
,

where ci (bi) is the value of the ith entry of c̄ (b̄). Note
that by setting the standard deviation we avoid using
any parameters in the logistic function. Given a con-
tinuous dataset of N samples (experiments/microarrays)
that are assumed to be independent and identically dis-
tributed, the probability of seeing the Boolean vector b̄ in
this dataset is:

P (b̄) =

∑
c̄i∈samples

p(b̄|c̄i)

N

In other words, for each Boolean vector we sum the
probabilities that each continuous vector corresponds to
it.

With the probability distribution over all Boolean vectors
in hand, we can use information theory to evaluate dif-
ferent topologies of the network. Similar approaches were
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previously used for network reconstruction.46,49 Denote
by HC(X|Y ) the conditional entropy for a gene X and
a set Y of regulators as computed using continuous data.
We selected for every gene X the set Y of regulators that
gave the best HC(X|Y ) score among all sets and tran-
scription factors of size ≤ 3.

For time-series, X was taken from time t and Y from
time t−1. Otherwise, we assumed samples were in steady
state and X and Y were taken from the same experiment.
Experiments in whichX is perturbed were discarded when
computing HC(X|Y ).

For the DREAM5 network inference challenge, the tran-
scription factor-target gene relationships identified by the
above procedure were ranked according to the conditional
entropy of the regulator set to which the transcription fac-
tor belonged to. This constituted 4,738, 13,120 and 17,519
interactions for networks 1,3 and 4 respectively. Since the
challenge allowed submitting up to 100,000 regulatory in-
teractions, we added to the list of predictions those pairs
of genes that had the highest correlation, ranked by their
correlation. In case of time series, the correlation was
computed between the level of the regulator at time t− 1
and the level of the regulatee at time t. In order to cope
with the large number of regulator sets in networks 3,4 we
used a computer cluster to distribute the tasks.

Note that this method is inherently incompatible with the
scoring scheme of DREAM5, because it assigns a score
to the set of regulators of every gene and not to every
transcription factor-target gene pair separately. Another
difference is the limit of three regulators per gene that
we imposed. This limit allowed us to examine all sets
of 3 regulators, a very large set given the DREAM5 net-
work’s size. In practice, however, some genes have more
than 3 regulators. A speedup version in which regulators
are selected incrementally can allow more regulators per
gene.34 Finally, a set of 3 regulators will always score bet-
ter in practice (sometimes insignificantly better) than a
set of 1 or 2 regulators, and we did not set a criterion that
prevents the addition of regulators that do not improve
the score significantly.

An advantage in this method’s focus on sets of regulators
is that there is a natural way to derive the regulatory logic
given the set of best scoring HC(Xi|Y ) for every gene i.
This can be achieved by performing steepest descent on
the function , i.e. on the total entropy of the network.
The partial derivative with respect to every continuous
variable can be computed exactly.

A tool implementing an extension of this method
is available for download at: acgt.cs.tau.ac.il/
modent/

10.16 Other 6 – Network inference using
quantitative modeling and evolution-
ary algorithms

The method presented here for inference of DREAM5 gene
networks is based on quantitative modeling using an in-
tegrative evolutionary approach. The model used is a
single-layered artificial neural network (ANN) and allows
for extraction of qualitative information on connections,
with the advantage of maintaining the ability to simulate
quantitative behavior. Given the high dimensionality of
the four datasets, the networks are less suitable for di-
rect quantitative modeling, as simulation for model evalu-
ation is computationally expensive, and the gene interac-
tion space is very large. Although reverse engineering is
difficult, quantitative models are valuable for networks of
this size, as they allow for large scale in-silico simulation of
the real system. We have included in the workflow several
mechanisms to reduce the search space required for reverse
engineering. These include grouping of tightly correlated
genes into modules and filtering of putative transcription
factors for each gene, prior to model inference by evolu-
tionary optimization. Additionally, models have been ob-
tained for each gene at a time for non-transcription factor
genes, while whole network analysis has been performed
for the transcription factor subnetwork only.

Data preprocessing. Due to the requirements of model-
ing and the inferential approach, which uses ANNs, the
expression values in the datasets had to be scaled to val-
ues on the interval [0, 1]. Scaling was performed differently
for the in silico and in vivo data, as values in the former
were more homogeneous than the latter, due to lack of
experimental differences. For the former, all values were
scaled by dividing by the maximum value in the dataset.
However, in the in vivo datasets, individual genes had
very different ranges of expression. Additionally, we have
observed that, for some knockout (KO) genes, expression
values were very large. In consequence, each gene vector
(column) has been first translated so that the minimum
value over all experiments is close to 0, after which the
scaling of all values (as above) was performed. This en-
sured a common scale for gene values and, at the same
time, brought KO genes to a low level of expression, while
not affecting the oscillations seen in the data.

Module computation. One dimensionality reduction
mechanism was grouping tightly correlated genes (values
from all available experiments) into modules, and consid-
ering these as a single gene in the network. These may
correspond to operons, which are common functionality
groupings in GRNs. Module computation was based on
pair-wise Pearson correlation and thresholds used were 0.9
for Networks 1, 3 and 4 and 0.95 for Network 2 (the higher
threshold used for the last dataset was due to the limited
number of experiments available, compared to the others).
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Regulators of a module, as well as all transcription factors
included, were considered to regulate all genes within that
module.

Transcription factor filtering. A second mechanism,
aimed at reducing the search space, filtered out the reg-
ulators that were not likely to influence a certain gene.
Filtering was based on KO data and the Pearson correla-
tion coefficient of the expression patterns for the gene and
the transcription factor, (all experiments). Specifically, if
a KO experiment for the transcription factor was avail-
able, the transcription factor was maintained in the list
of possible regulators for the current gene only if the ab-
solute value of the log-ratio for that gene was larger than
0.5 or if the absolute value of the correlation was larger
than 0.3. These thresholds are not particularly high, and
have been chosen in this way because the aim was to filter
out those transcription factors with no effect, (to obtain a
smaller set of transcription factors, which the inferential
algorithm can further refine), and not to obtain the final
list at this stage. In the case where no KO experiment ex-
isted, the correlation threshold was decreased to 0.1. This
strategy was applied to all datasets and resulted, on av-
erage, in filtering out between 50 and 60% of the possible
regulators

Model. The GRN has been modeled as a single-layered
ANN, consisting of one neural unit per gene. Each unit
i takes as input the expression values of the regulators
of gene gi (i.e. gj) at time point t and computes the
expression level for gene gi at time t+ 1, using the input
weights wij and the logistic function for activation.

Algorithm. The algorithm, based on the idea of nested
optimization introduced by,41 was chosen for extension
here as it performed well in a previous comparison of evo-
lutionary algorithms for GRN inference.78 In the original
algorithm, optimization is divided into structure and pa-
rameter searches. The former is performed by a genetic
algorithm, which aims at finding the correct regulators for
each gene, i.e. the structure, given a connectivity thresh-
old. Each candidate structure is then evaluated by the pa-
rameter search phase, using back propagation, with wild-
type time series data for training. The algorithm uses
a divide-and-conquer approach, i.e. optimization is per-
formed for one gene at a time. An extension of this algo-
rithm has been developed and used here. This performs an
additional optimization stage, (for the complete network),
starting with multiple single gene models, with different
connectivity thresholds. In this way, the connectivity for
each gene is also optimized to fit the data. This second
optimization stage is only performed on the sub-network
of transcription factors. Again, the focus is dimensionality
reduction, and was possible because the behavior of the
non-transcription factor genes does not affect any other
genes in the network. Additionally, the algorithm has been
enhanced to include other types of data, along with wild-

type time series data. Thus, population initialization is
based on knockout and over-expression experiments, while
model evaluation takes into account the simulation ability
for steady state and time series knockout experiments, as
well as perturbation time series.

Qualitative information extraction. Multiple runs were
performed and the models obtained were analyzed to ex-
tract the network layout. A weight was computed for
each interaction using the number of appearances in these
different models and on the magnitude of corresponding
ANN weights.

Discussion. Upon publication of the gold standards, we
have analyzed the effect of the dimensionality reduction
techniques employed. The modules obtained were vali-
dated using interactions in the data, with groupings shar-
ing all transcription factors in the synthetic network, and
most transcription factors in the in vivo gene expression
data, (with better results obtained for the E. coli net-
work). This indicates that usage of modules is relevant
for this analysis, although sometimes hindered by noise
in in vivo data. Transcription factor filtering, however,
was not as successful, as it also filtered out a large num-
ber of true interactions (29%, 41% and 46% for the three
networks), which explains the poor qualitative results ob-
tained overall. This indicates that very low correlation or
KO log-ratios, in the data for two genes, do not exclude
the possibility of meaningful interaction, especially in the
case of in vivo data. We have re-applied the algorithm
without the filtering step (for the E. coli network only,
due to time restrictions), but results did not show sig-
nificant improvement, as the search space becomes huge
without this preliminary step.

The low number of direct interactions retrieved may also
be due to the fact that a quantitative model displays good
simulation abilities even when interactions are indirect
(i.e. if gene a regulates gene b which in turn regulates
gene c, the algorithm may only (correctly) identify the ef-
fect of gene a on gene c, but for which a direct interaction
does not exist). Given the stochastic nature of the infer-
ential algorithm, and the high dimensionality and noise
in the data, this could be one explanation here. How-
ever, the quantitative nature of the model does have its
advantages, e.g. the possibility of simulating continuous
behavior. In the future, further development of the algo-
rithm will use stochastic evaluation for candidate models,
to overcome noise over-fitting. Additionally, as transcrip-
tion factor filtering has proved to be unreliable, we have
also incorporated a custom mutation procedure within the
algorithm, (based on KO experiments and correlations),
which has demonstrated promising preliminary results on
smaller networks, and will be applied to DREAM5 data
in the near future.
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10.17 Other 7 – Detecting interactions by
generalized logic

We responded to the DREAM5 network inference chal-
lenge with a generalized logical network modeling (GLN)
approach. In GLN modeling, an interaction is represented
by the generalized logic or truth table, similar to many
other approaches for discrete dynamic networks such as
discrete dynamic Bayesian networks. What distinguishes
this GLN approach is its network reconstruction from dis-
crete data using a χ2 test. Through this test, GLN model-
ing accounts for linear and nonlinear interactions, combi-
natorial effects, complexity of interactions, and time delay,
all through the significance of the χ2 test statistic.

Log transform on data from Network 1 (in silico yeast
network). On data from Network 1 only, we applied the
natural log transform ln(x). When a value is zero, we set
it to ln(y/10), where y = the smallest positive number.
There is no negative value in the data set. We noticed
that the original data, pooled for all genes, are uniformly
distributed between 0 and about 1, far from a normal dis-
tribution. The intention of the log-transform is to be more
sensitive to knockout or suppressed genes. Therefore,
through quantization (next step) on the log-transformed
data, we can distinguish knockout or suppressed values
from normal values, without jeopardizing over-expressed
genes at large values around 1, since the log function is
close to linear at around 1. For the other three networks,
we used the original data without the log transform be-
cause they are already symmetrical, uni-modal and bell
shaped, close to a normal distribution.

Quantization of continuous observations to discrete
ones. We quantized the original continuous observed data
for each gene into a various number of discrete levels. This
was achieved by determining the number of levels for each
gene first and then using an optimal distance based clus-
tering method. We first determined the number of quan-
tization levels k for each gene using the Gaussian mixture
model through the R package MClust. It chooses an opti-
mal number of components that maximizes the Bayesian
information criterion (BIC), considering both the likeli-
hood of a fit and the number of parameters used in a
Gaussian mixture model. However, if only a single Gaus-
sian component is obtained, we set the quantization levels
k to 3 instead of 1. We do this to capture changes in a
normal random variable. Given the number of levels for
each gene, k, we developed and applied a distance-based
clustering method called Ckmeans.1d.dp (available in the
R package repository) to quantize the continuous values
of each gene to discrete ones. This method minimizes
the sum of squares of within cluster distances by dynamic
programming, the same objective of the standard k-means
algorithm. The difference is that the algorithm guarantees
to return an optimal clustering, but the k-means method

does not.

GLN modeling to obtain highly significant interactions.
The GLN modeling establishes interactions through the
χ2 test among nodes in a network. An interaction is de-
fined as a many-to-one relationship between a set of parent
nodes and a child node. We first converted the four given
sets of DREAM5 files for each network to four trajectory
collection files. The χ2 test assesses the association be-
tween hypothetical parents and a child by the deviation
from the expected counts when no association exists. Each
gene node, starting with “G”, was treated as an internal
node in the network; each perturbation node “P” was an
external node in the network. Each chip was treated as a
single steady state snapshot. Therefore, for each trajec-
tory collection file of a network, there was the same num-
ber of trajectories as chips. The time course information
was thus not utilized. This decision was made based on
the observation that the time courses were usually short
and may not provide much dynamic transitions of the sys-
tem. Correspondingly, we used a Markov order of zero for
the modeling. Other parameters in GLN modeling were
set as follows. In each run, we set the maximum num-
ber of regulatory (parent) nodes per node to 2. We did
not allow self-cycle as it would lead to the choice of each
node as its own parent in a zero-Markov order network.
The α, or test size, for each χ2 test was set to a very
small number, specifically, 10−60 for network 1, 3 and 4,
and 10−40 for network 2 based on the size of each net-
work. This small k was set to counter the multiple testing
effect. As only ranks are relevant, we did not perform per-
mutation test to obtain a more accurate p-value for each
interaction. After each run on a network, interactions
were ranked by their p-value in the χ2 tests. If p-values
were same, interactions with less degrees of freedom were
ranked higher. If there was still a tie, then an interaction
with a higher χ2 value would be ranked higher. When
reporting the modeling results, we returned all interac-
tions that were considered significant, regardless of how
many interactions were reported for each node. Interac-
tions with more than one parent were broken into mul-
tiple parent-child pairwise interactions sharing the same
p-value for final submission.

Discussion. In the DREAM5 network inference challenge,
data from three of the four networks were no longer syn-
thetic, but were instead collected from in vivo biological
experiments. We expect less drastic change in the data
sets than what was relied on by the z-score test in the
previous DREAM challenges. Rather, we anticipated that
the χ2 test based GLN modeling may work with the real
biological data sets, now perhaps recording consistent but
less drastic expression change in response to gene knock-
out or environmental perturbations.

In this network reconstruction, we did not address direct
versus indirect interactions. We also did not consider the

43



temporal relationships in the data sets due to sparse sam-
pling, despite that GLN is capable of doing so. These may
have limited the performance of the GLN algorithm in the
DREAM5 network inference challenge.

10.18 Other 8 – Finding gene-gene interac-
tions by concurrence of change be-
tween conditions

We developed a computational method to detect gene-
gene interactions by concurrence of changes in genes
between different experimental conditions. Specifically,
change in expression level of gene i from one condition
to another, should cause shift in expression of target or
downstream genes of gene i. The approach is motivated
by a need to detect transcription factors and their target
genes through knockout experiments.

The two-sample t-test is used to detect shift in expres-
sion from one condition to another. In order to assert
an interaction based on concurrence in expression shift of
involved genes, it is necessary to detect the shift. The
p-value from the two-sample t-test is the significance of
the shift of a gene between two conditions. For each pair
of conditions, a p-value was obtained for each gene. Two
conditions were considered the same if and only if the data
were collected with the same experiment identifier and un-
der the same experimental setup. Experiments with dif-
ferent identifiers were considered as different conditions
despite the same experimental setups. Experiments with
different setups, under different perturbations or at dif-
ferent time points, were different conditions, regardless of
their experiment identifiers.

Concurrence of changes is identified by a χ2-test on a
probability table. Under two conditions, shift concurrence
was defined as a shift in expression of transcription factor-
target gene combinations or neither in targets nor tran-
scription factor combinations. A probability table (Table
10.18) illustrates probabilities of four possible events that
can occur under two conditions.

Concurrence in a shift among genes involved in an inter-
action was detected by a χ2-test. For each interaction,
a contingency table was created to record the number of
combinations of shifts/no shifts for a given transcription
factor-target gene pair collected from all pairs of different
conditions. A p-value (px) from a χ2-test on the contin-
gency table was the significance of either the concurrence
(in blue shading in Table 10.18), or non- concurrence (in
yellow shading) of a candidate interaction under all con-
ditions. We used the sign of Pearson’s correlation coeffi-
cient, CC, between the shift/non-shift count of the tran-
scription factor-target gene pair to differentiate concur-
rence versus non-concurrence. Finally, a confidence score

was assigned to each potential interaction as:

score =

{
px
2 CC < 0

1− px
2 CC ≥ 0

To generate potential interactions, all combinations of 1
and 2 transcription factors were enumerated to form an
interaction with every target gene. According to the con-
fidence scores of each interaction, top 100,000 interactions
were reported for each network.

For Network 1, a log transformation has been applied to
emphasize the knockout or suppression effect of a gene, as
the original data were not close to a normal distribution
to sacrifice small but significant expression values.

Discussion. In the DREAM5 netowrk inference challenge,
data from three networks were generated from real bio-
logical experiments on three organisms. Nonlinear regu-
lation patterns are most likely in these organisms. But
linear regulation patterns were the most reported by this
method, though it is a non-parametric approach. Since
the table measured concurrence was created by addition,
the knockout or knockdown effects were smoothed. And
we have not considered the consistency of concurrence of
changes.

10.19 Meta 1 — Inferring gene regulatory
networks using knockout data and re-
sampling

This method for the DREAM5 network reconstruc-
tion challenge was a pipeline closely resembling that of
the best-performing pipeline from the DREAM4 chal-
lenge.32,51,69 This pipeline is composed of three core
methods that we have shown can be combined in a mu-
tually reinforcing manner using a resampling approach.
The three core methods are: 1) median-corrected z-
scores (MCZ), which assigns confidence to regulatory
edges based on a z-score defined from the genetic knock-
out data; 2) time-lagged Context Likelihood of Related-
ness (tlCLR)32,51 which is based on Context Likelihood of
Relatedness (CLR),28 and explicit use of the time-series
data and mutual information77 to assign confidence to reg-
ulatory interactions; and 3) the Inferelator 1.0 (Inf1)10,11
which learns dynamics as well as topology by explicitly
using the time-series data to parameterize a linear ordi-
nary differential equation model using an l1 constrained
linear regression and model selection method.93 For the
DREAM5 network inference challenge we wanted to use
as much of the winning inference pipeline from DREAM4
as possible while making some modifications to account
for the differences between the DREAM4 and DREAM5
datasets.

The DREAM4 dataset was composed only of simulated
data, and contained a knock-out of every gene, including
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Between two No shift Shift in
conditions in targets targets
No shift in ptpc (1− pt)pc

Transcription factor candidate
Shift in pt(1− pc) (1− pt)(1− pc)

Transcription factor candidate

Table S1: χ2 contingency table for Other 8
Between two conditions, pt is the p-value measuring the probability of no-shift of a target gene; pc for a transcription
factor candidate gene. The top-left cell stands for the probability of neither shifted, while the bottom-right cell the
probability of both shifted.

all transcription factors. The core method 1, MCZ, took
advantage of this complete genetic knock-out data. The
DREAM5 data were either from in vivo experiments, or
simulated to mimic in vivo experiments, and contained
relatively few knock-outs of transcription factors, partic-
ularly in light of the order-of-magnitude increase in the
number of genes. Additionally, some of the experiments
contained replicate measurements and/or a matched wild-
type, i.e., a wild-type measurement performed by the
same lab. We took advantage of the replicate measure-
ments and matched wild-type measurements whenever
possible. We developed a new core method 1, which we
refer to as KOs + PKOs (knock-outs plus pseudo knock-
outs). In this method we ranked regulatory interactions
for the transcription factors for which knock-outs were
available. In order to alleviate the issue of having rela-
tively few KOs of transcription factors we identified con-
ditions which behaved similarly to KOs, i.e., only a few
regulators were expressed at levels significantly lower than
their wild-type expression. We called these conditions
PKOs, and ranked regulatory interactions based on these
conditions as well.

The pipeline for DREAM5 consisted of three core meth-
ods: 1) KOs + PKOs, 2) tlCLR, and 3) the Inferelator
1.0. Each method was run on 50-80 bootstrapped samples
of the data and combined as shown in Figure SS20. For a
detailed description of the tlCLR and Inferelator methods
and the method for combining core method results, we
refer the reader to.32

Methods. We denote by X the N ×M DREAM5 data
matrix consisting of M measurements of N genes, where
each measurement is a different experimental condition:
a wild-type control, a gene deletion, etc. X can then be
split into subsets comprising groups of similar conditions:
taking the rows corresponding to all annotated wild-type
conditions gives the wild-type matrix Xwt. We indicate
matrices for time-series (Xts) and genetic or environmen-
tal perturbation (Xpt). Unlike the DREAM4 data, these
groups are not mutually exclusive: some conditions may
be time series that include genetic and/or environmen-
tal perturbations. Xpt is defined as all perturbations not
part of time series experiments, while Xts is all time-series

data regardless of perturbation. In the following text, we
will also refer to two additional subsets that are partic-
ularly useful for inference: the set of first and last time
points in all time-series conditions (Xflts) and the set of
all steady-state gene deletions (Xko).

Knock-Outs. For each condition in Xko that contained
a knock-out of a transcription factor, xj , we ranked the
putative targets of xj , storing the results in a column of
Zko, the matrix that stores the confidence for each regula-
tory interaction. To build Zko, we found the genes which
were differentially expressed in the knock-out conditions
of transcription factor xj relative to their wild-type ex-
pression. We denote the conditions where xj was knocked
out by C = c1, . . . , cp where c1. . .cp index the columns
of X. Note that C will contain only one index unless
there are replicate experiments of the knock-out of xj .
XC is the matrix formed from these rows of X. Similarly,
W = w1, . . . , wq denotes the columns of X corresponding
to the wild-type control for that set of experiments (i.e., a
wild-type measurement from the same lab that conducted
the knock-out experiment), and XW the resulting ma-
trix. If no such experiment-specific wild-type existed, we
used the set of all wild-type conditions, Xwt, in place
of XW . Differential expression for XC relative to XW

was then calculated using one of two different methods.
When XC and XW both contained more than three repli-
cates (i.e., three columns) we used Significance Analysis
of Mircoarrays (SAM),85 as it has been previously shown
to successfully identify differentially expressed genes. We
developed a method diff_exp to calculate differentially
expressed genes when either XC or XW contained fewer
than three replicates. In short, for each transcription fac-
tor, xj , for which a knock-out existed we performed the
following steps: calculate a z-score for the log-difference
in expression, calculate a z-score for the fold-change in
expression, and combine the two using Stouffer’s method.
These steps are described mathematically below. Note
that these steps rank the putative targets of one tran-
scription factor, xj , and hence constitute one column of
Zko. This algorithm is repeated for each transcription
factor.

First, the data are transformed from log-space (in order
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Figure S20: Network inference pipelines tested for Meta 1.
We developed an inference pipeline closely resembling the winning pipeline from DREAM4.32 This pipeline is composed
of three core methods (1-3 above), which are combined in a mutually reinforcing manner using a resampling approach.
1) Core method 1 uses SAM and differential expression analysis on the genetic knock-out data, and conditions that
behave like knock-outs (which we refer to as pseudo knock-outs), to generate a ranked list of regulatory interactions.
2) Core method 2, time-lagged Context Likelihood of Relatedness, uses a mutual-information based algorithm, and
an underlying linear ordinary differential equation model to infer a putative regulatory network. 3) Core method 3,
Inferelator 1.0, uses an underlying linear ordinary differential equation model and l1 constrained linear regression to
refine the network from core method 2, and assigns dynamical parameters as well as topology. Resampling is used
to generate many permutations of the input time-series and steady-state matrices, which results in an ensemble of
putative networks inferred by core methods 2 and 3. Each network in the ensemble is then combined with the results
of core method 1. The final network is the median confidence score of each edge from the ensemble.

to calculate raw differences in expression), and averaged
across replicates (in order to reduce the noise of the mea-
surement):

xCi =
∑rC

j=1 2X
C
i,j/p, i = 1, . . . , N

xWi =
∑rW

j=1 2X
W
i,j/q, i = 1, . . . , N

Next zdiff , the z-score of the log absolute difference in
expression, and zfc, the z-score of the fold change in ex-
pression, are calculated:

zdiff = d1−median(d1)
sd(d1) , where d1 = log2

∣∣xW − xC∣∣
zfc = d2−median(d2)

sd(d2) , where d2 = log2x
C − log2x

W

z-scores are combined using Stouffer’s method and re-
ferred to as zcomb. Note an important difference between
the two z-scores: high positive values of zdiff signify a
large absolute change in expression in either direction,
while the signed value of zfc shows both magnitude and
direction of fold change. Therefore |zfc| is used to com-
bine z-scores. Negative values in zcomb, which stem from
insignificant entries in zdiff , are set to zero, after which
we can use the signs of values in zfc to assign direction
(over-/under-expression) to the zcomb values:

zcomb = max
(
zdiff+|zfc|√

2
, 0
)
× sign(zfc)

The diff_exp method generated z-scores with positive
values indicating relative over-expression and negative val-
ues indicating relative under-expression that are compa-

rable to the z-scores assigned by SAM.

Pseudo Knock-Outs. We also inferred pseudo knock-
out conditions: conditions that show a similar pattern
of change in expression as the annotated knock-outs.
In other words, these conditions show significant under-
expression for a small number of transcription factors. To
find these pseudo knock-outs, we constructed a new ma-
trix XC that was the union of sets Xpt and Xflts, i.e.,
that contained all steady-state perturbations and the first
and last time points of each time-series experiment. We
also constructed the corresponding matrix XW of wild-
type conditions where each row contained the wild-type
control for the corresponding row of XC , or median(XC)
if no wild-type control existed.

We then calculated, for each gene in each condition, the
matrix PZ of z-scores of the change in expression and the
matrix P∆ of absolute change in expression value. PZ

and P∆ are defined element-wise as below. Note that
the standard deviation and median for each gene were
calculated for that gene across all conditions:

pZi,j = (XC
i,j −XW

i,j )/σ(XC
1...C,j),

i = 1, . . . , C j = 1, . . . , N
p∆
i,j =

∣∣XCi, j −median(XC
1...C,j)

∣∣ ,
i = 1, . . . , C j = 1, . . . , N

We sorted PZ such that the most under-expressed genes
were at the top of the list, and P∆ such that the genes
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with the largest absolute change in expression were at the
top of the list. We then recorded, for each condition, the
genes which met a percentile threshold p in both lists. Fi-
nally, those conditions with a cutoff n or fewer genes were
labeled as potential knock-out conditions for the genes
meeting the percentile cutoffs.

We explored the effect of different p and n values using a
grid search, evaluating different cutoff values by compar-
ing the number of unique transcription factors annotated
as pseudo knock-out genes and the fraction of known dele-
tions selected as knocked-out genes in PKO conditions. p
and n values were chosen to give the highest number of
unique pseudo knock-out transcription factors and recall
of known deleted genes with the lowest possible number
of pseudo knock-outs (n) per condition. Once optimal
thresholds were set and pseudo knock-outs determined,
the pseudo knock-out conditions were analyzed using the
same pipeline as the annotated deletions. The analysis
of pseudo knock-outs was used to produce a matrix Zpko
analogous to the Zko matrix produced by analyzing an-
notated deletion conditions. We then used Zko and Zpko
to filter the set of genes for which to infer regulatory in-
teractions, as in.32

Combining Results. After this filtration step we applied a
resampling approach to core methods 2 and 3 to generate
an ensemble of networks (in the form of lists ranked by
confidence). For each network in the ensemble we com-
bined the rankings with the rankings from core method 1
(KOs + PKOs) using a rank based approach, as in.32,51
From this ensemble of networks we picked the median con-
fidence of each putative regulatory interaction as the final
confidence value, as in.32 This final confidence metric in-
cludes support from each of the core methods.

Discussion. The core of this inference pipeline is the Infer-
elator 1.0,11 which uses l1 constrained regression to select
parsimonious network models (as biological networks are
known to be sparse). In order to improve the completeness
of the network we combine the results of Inferelator 1.0
with those of tlCLR. We combine the two output networks
in such a way that each method is given equal weight in
the final network. To add more completeness to this net-
work we add the network inferred by KOs + PKOs, again
giving equal weight to both networks. Hence, in the final
network, the edges with the highest rank will be those that
are present in all three networks. There are relatively few
such edges, thus the beginning of the ranked list contains
those edges most likely to be correct. This is reflected in
the different between AUPR scores and AUROC scores, as
the former are strongly affected by the correctness of the
top few predictions while the latter measures performance
across the whole set of predictions.

We tested the efficacy of the PKO method by compar-
ing the DREAM5 scores of inference runs performed with

and without the PKOs. Inclusion of PKOs resulted in
a gain of 2.4 points in overall score over the no-PKO
run (+2.6/+2.1 for AUPR/AUROC). Networks 1 and 3
showed improvement in both AUPR and AUROC, but no
improvement was seen in network 4; we are not sure at
this time what accounts for the lack of improvement in
network 4 beyond the general difficulty of inference on
that network.

10.20 Meta 3 — Analyzing subsets of het-
erogeneous gene expression compen-
dia to elucidate transcriptional regu-
latory networks

The provided expression compendia were created by com-
bining many unrelated experiments, such as specific gene
knock-outs, over-expressions, drug treatments, as time se-
ries or steady state measurements. In order to exploit
the different types of information included in these mixed
datasets, we applied three distinct approaches to different
subsets of data, and then combined the results into a final
prediction. This method will be described in more detail
elsewhere.67

We employed SysGenSIM,66,68 a simulation toolbox, to
generate artificial transcriptional regulatory networks and
to simulate gene-expression data for experiments similar
to those in the provided compendia.67 This allowed us
to evaluate a variety of inference algorithms using the
AUROC and AUPR. After thorough simulation studies
we decided to use three different methods on distinct data
subsets.

Perturbation-response analysis. We identified experi-
ments concerning TF knockout or over-expressions. The
goal was to identify the potential targets of strongly per-
turbed TFs. Similar to the approaches we employed in
previous DREAM network inference challenges,66,76 we
calculated for all potential target genes the relative re-
sponse to the perturbations (superscript indicates the per-
turbation):

RTFi→Tj =
TTFi
j − TWT

j

TWT
j

In addition we employed double knockout or over-
expression. To gain more confidence in TFi → Tj we
calculated (when possible):

RTFi→Tj =
TTFi,TFk

j − TWT
j

TWT
j

−
TTFk
j − TWT

j

TWT
j

The double knockout or over-expression can have extra
information for TFi → Tj , however the response to the
double perturbation might be explained by the effect of
TFk, so this must be subtracted. In some cases TFk was
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not perturbed alone and then we could not subtract its
effect, accepting to make some mistakes as a trade off for
also identifying real targets of TFi. In case of triple knock-
outs, we proceeded in a similar way. S1

ij(the confidence
in TFi → Tj) was obtained by averaging the absolute
RTFi→Tj

values from single, double and triple knockout
and over-expression experiments.

Partial correlation analysis. This was applied to steady
state data (we only used the last time point of the time
series), with the goal to exploit the expression correlation
between a TFi and its targets. We applied full order par-
tial correlation75 using the GeneNet R package.v S2

ij is
the absolute value of partial correlations ωTFi,Tj

.

Co-deviation analysis. This was applied to chips with
drug perturbations, and chips featuring non-TF single
gene perturbations. The goal was to check if target Tj con-
sistently makes large deviations in expression when TFi
makes large deviations. We first converted the gene ex-
pression values into z-scores. Then, for each transcription
factor TFi:

1) The data was split into two subsets: one group of obser-
vations DH

i with zi > d (TFi is ’high’) and another other
group of observations DL

i with zi < −d (TFi is ’low’);
best results were obtained with d = 0.5,

2) To identify the potential targets Tj of TFi, for each Tj a
two-sided t-test was performed to check whether its mean
in DH

i is significantly different from its mean in DL
i . S3

ij

is the absolute value of the t-statistic tij (test performed
for Tj when datasets are formed based on deviations of
TFi).

Combining. The edge confidences S1
ij , S2

ij and S3
ij

were combined into a single confidence score by using a
weighted mean of the ranks. The weights were obtained
through an optimization process on simulated data.

Discussion. This method was among the top performers
on the in vivo data, but had only average performance on
the simulated data. These results reveal that the combina-
tion of different inference techniques is indeed useful, espe-
cially with heterogeneous compendia, provided that these
data are correctly subdivided. Moreover, even if gene ex-
pression simulations are more and more realistic, it clearly
emerges that inference methods having good performances
on synthetic datasets cannot always be expected to obtain
the same results on in vivo gene expression data. This em-
phasizes the need for realistic simulation, to generate data
with properties similar to those observed in in vivo data,
an issue in which we have put much effort when creating
SysGenSIM.

vstrimmerlab.org/software/genenet

Figure S21: Inference method design for Meta 5.
The organization of the data and the the algorithms that
were used as input to the naïve Bayesian classifier.

10.21 Meta 5 – A naïve Bayes based ap-
proach to network inference

In this methodology we start by splitting the data accord-
ing to the experiment type, then we analyze them accord-
ing to specific statistical methods. Each method is used to
evaluate the plausibility of the edges. Finally, to combine
the statistics we follow a naïve Bayes approach.

Method. To analyze the data, the four statistics summa-
rized below have been used:

• Pearson correlation coefficient (PCC): a standard
method used to get a basic guess about the relation-
ship between each pair of genes.

• Limma: a linear models approach to assess differen-
tial genes expression. This is a commonly used algo-
rithm for analyzing experiments when the number of
samples is limited.80

• maSigPro: a method for the analysis of experiments
that include time series. In working with this tool a
sequential experiment design matrix has been used.20

• z-score: the standard z statistic. We used it in ex-
periments when other tools could not be applied.

We dealt with each type of experiment design using one
(or two) of the above statistics. The statistic used for each
kind of experiment is shown in Figure S10.21. In deletion
experiments we put an edge between the deleted gene and
all the significantly expressed genes. In the other experi-
ments we find the clusters of co-expressed genes and put
an edge between each transcription factor and all other
genes. The combination of the statistics was evaluated
using a naïve Bayes approach.

The goal is to compute the probability that an edge be-
longs to the network given the experimental evidence. Let
us denote with X the variable that is equal to 1 when a
given edge belongs to the network and to 0 otherwise.
Let us also define with Y1 . . . Ym the values of statistics
assessing the given edge. We would like to compute the
probability P (X = 1|Y1 . . . Ym). By Bayes’s theorem, this
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quantity can be written as:

P (X = 1| Y1 . . . Ym)

=
P (Y1 · · ·Ym|X = 1)P (X = 1)∑
P (Yi · · ·Ym|X = x)P (X = x)

=

∏
P (Yi|X = 1)P (X = 1)∑∏
P (Yi|X = x)P (X = x)

where the equality holds by assuming independence be-
tween the statistic values. In order to compute the
given formula, we specify the probabilities for P (X = 1)
and P (X = 0). We evaluated them by exploiting the
fact that in scale free networks: k−γ is the probability
that a randomly chosen node has exactly k edges (where
γ ∈ (2, . . . , 3)). Here, as suggested by Barabasi and Al-
bert,7 we set γ = 3. It follows that the number of edges
e(N) in a scale free network of size N can be computed
as: e(N) =

∑N
k=1N × P (k) × k = N

∑N
k=1

1
k2 . We ap-

proximate the quantity
∑N
k=1

1
k2 with π2

6 (its limit for
N → inf). The apriori probability P (X = 1) of picking
up an edge belonging to a network of size N is given by
e(N)
N2 = π2

6N . Finally, each of the P (Yi|X = x) distribu-
tions has been manually set by taking into consideration
the characteristics of each statistic.87

Discussion. Gene network reverse engineering is a ma-
jor challenge in computational biology and, the presented
method is one of the simplest approaches that can be de-
veloped for a problem of this complexity. Indeed, simplic-
ity has been one of the goals we strived to attain in its de-
sign. In fact, past DREAM contests emphasized that sim-
pler methods could perform as well as others. Also, when
in vivo networks are to be analyzed, data scarcity and
its quality demand for classifiers built using a small num-
ber of well understood parameters. This method showed
average performances in the DREAM contest.

An interesting facet of this methodology is that it per-
formed remarkably better in the case of in vivo networks
than with in silico ones: it is among the top performers
(it ranks third) when the in silico dataset is not consid-
ered (it ranks 15th otherwise). A number of interesting
questions could be raised by this observation: what is in
synthetic datasets that set them apart from natural ones?
Should one strive to optimize new algorithm more aggres-
sively on natural dataset? Could the culprit be found in
the quality of in vivo data, so that most of these methods
will perform much better when this quality increases? We
believe that the answers to these questions may help in
better understanding current tools and in developing new
ones.
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